
Jin Zhao
BTech 451

Machine Learning
The Intelligent Functional Approach

1 Introduction
	 Learning is the act of acquiring new, or modify and reinforcing, existing knowledge, behaviours, skills
values, or preferences and may involve synthesising different types of information. Since the inception of the
computer era, researchers have been striving to implant such capabilities in computers. Solving this problem has
been, and remains, a most challenging and fascinating long-range goal in artificial intelligence (AI). The study
and computer modelling of learning process in their multiple manifestations constitutes the subject matter of
machine learning (ML).

 1.1 The objective of machine learning

	 Machine leaning is a type of artificial intelligence approach, according to Samuel

(1959), ML provides computers with the ability to learn without being instructional

programmed. Furthermore, ML focuses on the development of computer programs that can

teach themselves to reproduce and adjust when exposed to new data. Nick [1] has pointed

out, ML process can be subdivided into two parts supervised machine learning and

unsupervised machine learning, which both part focused on different conclusions given by a

bunch of data. In this report, I will give a basic implementation of both supervised and

unsupervised machine learning process。

2 Unsupervised Learning

	 Unsupervised learning is a type of machine learning which algorithm will be used to

draw inferences from datasets consisting of input data without labelled response. In this

report I will focus on the most common unsupervised learning method cluster analysis, which

is used for exploratory data analysis to find hidden patterns or grouping in data, furthermore,

I will implement the k-means algorithm which was first mentioned by MacQueen[2] and the

BTECH 451 "1

idea goes back to Steinhaus [3] to compute the Euclidean distance matrix for measuring the

similarity of given data set.

 2.1.1 k-means algorithm

	 k-means clustering is a method of vector quantisation which aims to partition n

observations into k clusters in which each observation belongs to the cluster with the nearest

mean, serving as a prototype of the cluster. According to Tuceryan and Jain [4] results given

by k-means algorithm in a partitioning of the data space into Voronoi cells.

The mathematical proof based upon Selim and Lsmail (1984),

	 Given a set of observations (p1, p2, …, pn), where each observation is a 2- dimensional real vector,
k- means clustering aims to partition the n observation into k (k ≤ n) sets S = {S1, S2, …, Sn} so as to
minimise the within-cluster sum of squares(the linear function sum of squares will lead the cluster into
Voronoi cells), which in other words, its objective is to find the root for:

	 Furthermore, In mathematics, a Voronoi diagram is a partitioning of a plane

into regions based on distance to points in a specific subset of the plane [5]

The mathematical deduction of the Voronoi diagram,

	 Let X be a metric space with distance function d. Let K be a set of indices and let (P_k) {k ϵ K} be
a tuple (ordered collection) of nonempty subsets (the sites) in the space X. The Voronoi cell, or Voronoi
region, R_k, associated with the site P_k is the set of all points in X whose distance to P_k is not greater
than their distance to the other sites P_j, where j is any index different from k. In other words, if d(x, A)
= inf { d(x, a) |a ϵA\} denotes the distance between the point x and the subset A then,

 R_k = {x ϵ X| d(x, P_k) ≤ d(x, P_j) for all j ≠ k }

BTECH 451 "2

	 In Figure 1 the Voroni diagram(generated by http://alexbeutel.com/webgl/

voronoi.html) of 14 points and in Figure 2 the outcome of 10000 points in 14 clusters which

calculated by k-means algorithm (base on Computing the least euclidean distance between

observations and the cluster centroid),

Figure 1 Figure 2

	 It is clear, that the behaviour of the k-means algorithm measured by the

Euclidean distance matrix is similar to the way we generate the Voroni diagram.

 2.1.2 Standard Algorithm

	 The algorithm uses an iterative refinement technique, which the algorithm proceeds

two steps:

1. Initialise centroids based upon the k value and assign each observation into the

cluster, which firstly I will set each cluster at least one value to make sure that there will

not be an empty cluster, after that each data in the raw observation list will be given a

random cluster number, the C# implementation is shown below,

public static void initializeCentroids (int numberOfClusters,
 List<DataPoint> data) {

BTECH 451 "3

 Random random = new Random(numberOfClusters);
 for (int i = 0; i < numberOfClusters; i++) {
 data[i].Cluster = i;
 }
 for (int i = numberOfClusters; i < data.Count; i++) {
 data[i].Cluster = random.Next(0, numberOfClusters);
 }
}

	 The method above takes n (n= number of clusters) elements from the raw

observations and assigns them into n different clusters. The remaining observation will be

assigned into randomly selected clusters. The method have O(n) for runtime.

	 Also, in order to calculate the means for all the clusters we have grouped observation

data into arrays by their cluster value.

public static Boolean calculateMeans (List<DataPoint> data,
 int clusterNumber,
 DataPoint[] clusters) {

 if (emptyCluster(data)) return false;
 List<DataPoint>[] clusterList = new
List<DataPoint>[clusterNumber];
 for (int i = 0; i < clusterNumber; i++) {
 clusterList[i] = new List<DataPoint>();
 }
 foreach (DataPoint i in data) {
 clusterList[i.Cluster].Add(i);
 }
 double height = 0.0;
 double weight = 0.0;
 for (int i = 0; i < clusterNumber; i++) {
 foreach (DataPoint dp in clusterList[i]) {
 height += dp.Height;
 weight += dp.Weight;
 }
 DataPoint dpi = new DataPoint();
 dpi.Height = height / clusterList[i].Count();
 dpi.Weight = weight / clusterList[i].Count();
 clusters[i] = dpi;
 height = 0;
 weight = 0;
 }
 return true;
}

BTECH 451 "4

	 The calculatedMeans method takes grouped observations as the input and produce an

array of the cluster means as the centroid of the cluster, the method has O(n) for runtime.

	 Overall, step 1 randomly initialises the cluster and produce the mean of each cluster

as new data points in terms of the centroid for the cluster. The runtime is O(n).

The demonstration for step 1 is shown in Figure 3,

BTECH 451 "5

Figure 3

0

3.5

7

10.5

14

0 4.5 9 13.5 18

n initial “means” (in this case n = k= 3) the first 3 observations been assigned to 3

different clusters (represented by 3 different colours, green; yellow and red), the rest

observations has been randomly assigned into the clusters (we are not interesting the random

selection therefore the colour is shown as blue).

2. In this stage the data point moved from a cluster to a new one. I updated the value

stored in its Cluster property based upon compering the difference between the observation

and the all the centroids, then I choose the cluster with the minimum difference and move the

data point to that cluster. The following code is responsible for this,

public static bool updateClusterMembership (int numberOfClusters,
 List<DataPoint> data,
 DataPoint[] clusters) {
 bool changed = false;
 double[] distances = new double[numberOfClusters];
 for (int i = 0; i < data.Count; i++) {
 for (int k = 0; k < numberOfClusters; k++) {
 distances[k] = elucidanDistance(data[i], clusters[k]);
}

 int newClusterId = miniIndex(distances);
 if (newClusterId != data[i].Cluster) {
 changed = true;
 data[i].Cluster = newClusterId;
 }
 }
 if (changed == false)
 return false;
 if (data.Count()==0) return false;
 return true;
}

Computing the least euclidean distance and putting the data into the right cluster. The

sum of squares will be given as the squared euclidean distance, the C# implementation is

shown below,

public static double euclideanDistance (DataPoint data,
 DataPoint potentialMean) {
 double diff = 0.0;
 diff = Math.Pow(data.Height - potentialMean.Height, 2);
 diff += Math.Pow(data.Weight - potentialMean.Weight, 2);
 return Math.Sqrt(diff);
}

BTECH 451 "6

Thus, the outer-most loop iterates the items of all the observations, the next loop within

this one calculates the Elucidan distance between each item in the data collection and the

means of clusters stored in cluster array the result of each of the these comparisons in an

array called distances, after that, the code takes the minimal value in the array and checks

whether this data point is already in that cluster. If the data point is not in the cluster with the

minimum distance I move the data there by changing its cluster property. The step overall

runtime is O(n).

The demonstration of updating cluster membership method is given in Figure 4,

The value of centroid of each of the k clusters becomes the new mean, in Figure

2 the mean of green is (1, 9), the mean of yellow is (10.5, 4.17) and the mean for read

is (17, 10.33).

BTECH 451 "7

Figure 4

0

3.5

7

10.5

14

0 4.5 9 13.5 18

Hint, the idea behind the K-means Clustering algorithm is that we are trying to

move the items into more suitable clusters until there is no change in cluster

membership happens

Also, if the observation has pre-defined clusters the algorithm will be able to

distinguish the hidden patten, in Figure 5 I have a data set with three "pre-defined"

clusters, and I set the k value to 3 for the algorithm the result is given below,

Figure 5

However if the k value is greater than 3, then some big cluster will start to

fragment into smaller parts and the demonstration is shown in Figure 6,

BTECH 451 "8

Figure 6

Similar to Figure 6 with greater k value the big data will start to fragment into

smaller parts but the small clusters will hold unchanged, and the demonstration is

shown in Figure 7,

BTECH 451 "9

Figure 7

BTECH 451 "10

2.1.3 A coin-flipping experiment

	 In order to illustrate what k-means algorithm can do we consider a simple coin-

flipping experiment in which we are given a pair of coins A and B of unknown biases,

and respectively (that is, on any given flip, coin A will land on heads with probability and

tails with probability 1- and similarly for coin B). Our goal is to estimate the biases by

repeating the following procedure 10 times: randomly choose one of the two coins (with

equal probability), and perform ten independent coin tosses with the selected coin. Thus, the

entire procedure involves a total of 100 coin tosses. The following code is responsible for this,

 static void Main(string[] args) {
 KMeans kmeans = new KMeans(2);
 double A_Biases = 0.9; // The probability to head(A)
 double B_Biases = 0.1; // The probability to head(B)
 int expRand = 10; // Rand number
 int toess = 10; // Toss for a rand
 double [][] observations = new double [expRand][];
 for (int i = 0; i < expRand; i++) {
 double X = oneTime(A_Biases, B_Biases,toess);
 observations[i] = new double[2];
 observations[i][0] = dataNormalization(X,toess);
 observations[i][1] = 10 - observations[i][0];
 toess = toess + 10;
 }
 int[] labels = kmeans.Compute(observations);
 var temp = kmeans.Clusters.Centroids;
 for (int i=0;i<temp.Length;i++) {
 for (int j=0;j<temp[i].Length;j++){
 Console.Write(temp[i][j]+" ");
 }
 }
}

The code above references the Accord.MachineLearning library(from https://

www.google.co.nzurlsa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj-0ebykZHNAhVk

xqYKHWKJCdgQFggmMAA&url=http%3A%2F%2Faccord-

framework.net%2F&usg=AFQjCNELitjh3lNuYxGYyed5FUNKCvi8ug). Library offers the

framework for k-means algorithm which generating the clusters toward the euclidean

distance.

BTECH 451 "11

https://www.google.co.nzurlsa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahukewj-0ebykzhnahvkxqykhwkjcdgqfggmmaa&url=http://accord-framework.net/&usg=afqjcnelitjh3lnuyxgyyed5funkcvi8ug
https://www.google.co.nzurlsa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahukewj-0ebykzhnahvkxqykhwkjcdgqfggmmaa&url=http://accord-framework.net/&usg=afqjcnelitjh3lnuyxgyyed5funkcvi8ug
https://www.google.co.nzurlsa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahukewj-0ebykzhnahvkxqykhwkjcdgqfggmmaa&url=http://accord-framework.net/&usg=afqjcnelitjh3lnuyxgyyed5funkcvi8ug
https://www.google.co.nzurlsa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahukewj-0ebykzhnahvkxqykhwkjcdgqfggmmaa&url=http://accord-framework.net/&usg=afqjcnelitjh3lnuyxgyyed5funkcvi8ug

2.1.4 Experiment hypothesis
Assuming k-means algorithm is going to generate 2 clusters in terms of 2 coins’s

toss, the centroids for the cluster will be the bias for the coin (and). For

example if experiment one takes A coin, and got results for TTTHTHTHTH which

will be recorded as point (4, 6) which x= number for heads and y = number for tails.

However, assuming k-means algorithm will be performing differently by the

difference between two biases (d =| - |) , and it is impossible to have a coin

with 100% bias (will only get heads or tails).

2.1.5 Methodology

We set the biases from 0.1 to 0.9 for the possibility to heads and run the

experiment for 50 times. We exam the standard deviation and mean regarding to the

expecting bias value.

2.1.6 result

Based upon appendix A, we take the total difference between result value and

the expected value (|E - R | + |E - R |). Also the total standard deviation

of two values. The result value is shown below,

Difference for 2 biases Total difference Total sd

0 0.278 2.269

1 0.79 0.39

2 0.33 0.309

3 0.212 1.09

4 0.131 0.525

5 0.179 1.294

6 0.115 0.279

7 0.101 0.37

8 0.039 0.417

BTECH 451 "12

2.1.7 Experiment conclusion

Based upon the results stated above, it is clear that k-means algorithm will

preform well when the difference between two biases is considerably large. Generally,

the expected bias value is within the range offered by the standard deviation.

In this experiment we group the rand on similar toss together. For e.g. all tosses

that have 7 heads are grouped into a single cluster as their bias is vary similar and

Other cluster will be similar to this. Therefore, this type of Clustering is called

partition or iterative clustering (Dhillon,Guan & Kogan, 2002). The algorithm

converges even though sometimes it may take exponential time. Although, in practice

it converges very fast. Also the algorithm might get stuck in a local minimum that has

an arbitrarily bad cost

2.2 Overall Conclusion

The k-means algorithm accepts two inputs. The data itself, and “k”, the number

of cluster. The output is k clusters with input data partitioned among them. There

are different measures for the notion of similarity or dissimilarity (AKA distance) like

the Euclidean distance, Manhattan Distance or Cosine similarity etc. The reason why

we need so many different measurements is in the “real world” things are a bit

complicated when the items are not points but objects with some attributes (for e.g.

the content of an article, location of a person). Thus, in this case we need to design

our own distance measure in order to suit the scenarios. For instance, we want to

check if news articles talk about same topic, a simple distance measurement can be to

find the entities in an article and compare their frequencies. Saying two articles with

common words like Donald Trump, Hillary Clinton, test “might” talk about same

topic. For a real world application, finding a good distance measure requires lot of

work, because the measurement should be efficient but also reasonably accurate.

The algorithm do have some random generating, because the initialising

centroids, according to Bradley and Fayyad (1998), initial points is very critical to

avoid local minima and a good set of initial points are important as it influences both

quality of clusters and also the running time of the algorithm. Paper by Arthur and

Vassilvitskii shows that if picking the next candidate centre with probability

BTECH 451 "13

proportional to its minimum distance squared from the current set of clusters allows

for provable guarantees on the quality of the solution returned by k-means. However,

the actual results will be slightly different but the trade-off in performance is worth to

consider.

There is no way to guarantee the running time, cause the algorithm might run

into a local local optimum, but generally the k-means algorithm can take exponential

time to converge.

As my project , I did clustering of simple scenario with three Gaussian

distributions, non-linear scenario and some random data set. The task showed

something like this: Lets say if you record the informations like height, weight or age

we can group the information into clusters and the cluster can be represented into

patterns (Bishop, 2006), in other words, we like to think of ourselves as individuals

but we are actually a pattern with online DNA which includes we married or single,

we educated or not, we are rich or poor. The data mining cluster can be the tool to

reveal our true nature.

BTECH 451 "14

2.3 Regression Machine Learning Systems

In regression machine learning systems I will be interested in the best fitted linear

function y= kx + b, for given cost function ,and in this case I

have a set of points with 2 dimensional values (x,y). The initial prediction has been given as

y= 12 +0.2x (k= 0.2 and b=12), the graphic view is shown in Figure 8.

 Figure 8.

In order to optimize the value in y= kx +b; we reference the simplex, the truncated

Newton method and the BFGS method from the DotNumerics libraries (from http://

www.dotnumerics.com/NumericalLibraries/). Three methods will optimise the standard

form function for given cost function. The process is shown below.

BTECH 451 "15

http://www.dotnumerics.com/NumericalLibraries/
http://www.dotnumerics.com/NumericalLibraries/

2.3.1 Simplex Method

Simplex simplex = new Simplex();
double[] simplexMinimum = simplex.ComputeMin(bananaFunction,

 initialGuess);

public double bananaFunction(double[] x) {
 double sum = 0;
 for (int i = 0; i < setOfPoints.Length; i++) {
 Func<double, double, double, double> h = (b, y, z) => b + y * z;
 sum = sum + setOfPoints[i].Y - h(x[1], x[0], setOfPoints[i].X);
 }
 double result = Math.Pow(sum, 2) / (2 * setOfPoints.Length);
 return result;
}

The C# code above allows simplex.ComputeMin() method to take the

initialGuess(k=0.2, b=12) and the cost function(given by method bananaFunction()) as input

to generate an array of best fitted k value and b value, and we will take the final values either

after 1000 evaluation or the difference between E_i and E_i+1 is small than 1e -5. The results

are shown in Figure 9.

 Simplex Method

 Figure 9.

BTECH 451 "16

2.3.2 Truncated Newton Method

TruncatedNewton tnewt = new TruncatedNewton();
double[] tnetMinimum = tnewt.ComputeMin(bananaFunction,
 bananaGradient,
 initialGuess);
public double[] bananaGradient(double[] x) {
 double sum = 0;
 double sum2 = 0;
 double[] relust = new double[2];
 for (int i = 0; i < setOfPoints.Length; i++) {
 Func<double, double, double, double> h = (b, y, z) => b + y * z;
 Func<double, double, double> h0 = (a, b) => 1.0;
 Func<double, double, double> h1 = (a, b) => a;
 sum = sum + (h(x[1], x[0], setOfPoints[i].X) - setOfPoints[i].Y);
 sum2 = sum2 + (h(x[1], x[0], setOfPoints[i].X) - setOfPoints[i].Y) * x[0];
 }
 relust[0] = sum / setOfPoints.Length;
 relust[1] = sum2 / setOfPoints.Length;
 return relust;
}

The C# code above allows tnewt.ComputeMin() method to take bananaFunction(given

by the code in simplex section), bananaGradient(given by bananaGradient which takes input

array with b value, k value and output the differentiations for standard form linear equation

y=kx+b) and the initialGuess(k=0.2 and b=12) to generate an array of best fitted k value and

b value for given cost function. The results are shown in Figure 10.

 Truncated Newton Evaluation

 Figure 10

BTECH 451 "17

2.3.3 BFGS Method

L_BFGS_B lbfgsb = new L_BFGS_B();
double[] lbfgsbMin = lbfgsb.ComputeMin(bananaFunction,
 bananaGradient,

initialGuess);

Similarly, the C# code above allows bfgsb.ComputeMin() method to take

bananaFunction (given by bananaFunction() in the simplex method section), bananaGradient

(given by bananaGradient() in Truncated newton method section) and the initial Guess(where

k=0.2 and b= 12) to compute the desired output, which is shown in Figure 11.

 BFGS Evaluation

Figure 11.

2.3.4 Conclusion

The evaluation above gives a clear implementation of the basic ML, the system will

begin with initial guess where k=0.2 and b=12, for every evaluation in the process both k and

b value will be adjusted under hidden algorithm in the method which referenced in the

DotNumerics libraries. Three methods return an almost same result, therefore, the

implementation is a successful implantation of the regression machine learning systems.

BTECH 451 "18

3 Supervised Learning

	 In supervised learning, we are given a data set and already know what our correct

output should look like, having the idea that there is a relationship between the input and the

output[6]. Supervised learning problems are categorised into "regression" and "classification"

problems [7]. In a regression problem, we are trying to predict results within a continuous

output, meaning that we are trying to map input variables to some continuous function. In a

classification problem, we are instead trying to predict results in a discrete output. In other

words, we are trying to map input variables into discrete categories.

3.1 Classification Machine Learning Systems

In classification machine learning system, I am interest in yes or no prediction which in

this case has been shown in the truth table for a given logic gate, where I take input matrix

{1 ,0 ,0 } with an additional value 1 in the first digit, and the output will be differently by

{1 ,0 ,1 } different kinds of desired logic gates. For example, the desired output for the

{1 ,1 ,0 } NAND gate will be { 1, 1, 1,0}. In order to do this, I will have an algorithm of

{1 ,1 ,1 } training devices, which takes input matrix and the desired output to compute the

weight value for each input digit, furthermore the weight will be shown as a standard linear

equation y= kx + b, in other words, assuming there is a linear y= kx+b can separate the 1

values from 0 values in the output. For instance the mathematical proof for NAND gate is

shown in Figure 5 (threshold t=0.5, learning rater= 0.1).

BTECH 451 "19

Figure 12 illustrates the theoretical process of the tanning device, since the algorithm

predicts yes or no (1 or 0) as output, we set the threshold value to (1+0)/2 =0.5, and the

correction for the weight values happens when both input digits is 1 and the error is not 0(eg.

in round 1, input {1, 0,1} with error = 1 and weight { 0.1, 0, 0}, then after this evaluation the

wight values will become to { 0.1+1*0.1, 0 , 0 +1*0.1}.

The C# implementation is shown below.

Input values Wights values Sum of(input
*weight) if S> t then
1, else 0

Desired
output

Error Correction

Round 1

{ 1, 0, 0} { 0, 0 , 0 } 0 1 1 0.1

{ 1, 0, 1} { 0.1, 0 , 0 } 0 1 1 0.1

{ 1, 1, 0} { 0.2, 0 , 0.1 } 0 1 1 0.1

{ 1, 1, 1} { 0.3, 0.1 , 0.1 } 0 0 0 0

Round 2

{ 1, 0, 0} { 0.3, 0.1 , 0.1 } 0 1 1 0.1

{ 1, 0, 1} { 0.4, 0.1 , 0.1 } 0 1 1 0.1

{ 1, 1, 0} { 0.5, 0.1 , 0.2 } 1 1 0 0

{ 1, 1, 1} { 0.5, 0.1 , 0.2 } 1 0 -1 -0.1

....

Round 7

{ 1, 0, 0} { 0.7, -0.2 ,-0.2 } 1 0 0 0

{ 1, 0, 1} { 0.7, -0.2 ,-0.2 } 0 1 1 0.1

{ 1, 1, 0} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 1, 1} { 0.8, -0.2 ,-0.1 } 0 0 0 0

Round 8

{ 1, 0, 0} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 0, 1} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 1, 0} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 1, 1} { 0.8, -0.2 ,-0.1 } 0 0 0 0

BTECH 451 "20

public static Tuple<double[], int, bool, string> tranningDivace(double[][] inputs,
 double[] outputs,

string name) {
 int count = 0;
 bool fixPoint = true;
 double threshold = 0.5;
 double learning_rate = 0.1;
 double[] weights = new double[inputs[1].Length];
 while (true && count < 20) {
 fixPoint = count + 1 == 20 ? false : true;
 count++;
 double error_count = 0;
 for (int i = 0; i < inputs.Length; i++) {
 double[] arr1 = new double[inputs[1].Length];
 for (int j = 0; j < inputs[i].Length; j++) {
 arr1[j] = inputs[i][j];
 }
 double num = 0;
 if (dot_product(arr1, weights) != threshold) {
 num = dot_product(arr1, weights) > threshold ? 1 : 0;
 } else {
 num = 0.5;
 }
 double error = outputs[i] - num;
 if (error != 0) {
 error_count += 1;
 int index = 0;
 foreach (double q in arr1) {
 weights[index] += learning_rate * error * q;
 index++;
 }
 }
 }
 if (error_count == 0) {
 return Tuple.Create(weights, count, fixPoint, name);
 }
 }
 return Tuple.Create(weights, count, fixPoint, name);
}

public static double dot_product(double[] values, double[] weights) {
 double sum;
 sum = values.Zip(weights, (X, Y) => X * Y).Sum();
 return sum;
}

(In order to make the implementation more stable I've set up a limit value where when

the value returned by dot_product(Sum * weight in Figure 5) = 0.5, system will return 0.5).

The outputs for NAND are shown below.

BTECH 451 "21

 Weights for NAND Round: 8 FixPoint: True
 0.7 -0.15 -0.1

 Truth table for NAND

 0 0 1
 0 1 1
 1 0 1
 1 1 0

Also the output for AND, OR and XOR.

 Weights for AND Round: 3 FixPoint: True
 0.2 0.2 0.2

 Truth table for AND

 0 0 0
 0 1 0
 1 0 0
 1 1 1

 Weights for OR Round: 3 FixPoint: True
 0.35 0.2 0.25

 Truth table for OR

 0 0 0
 0 1 1
 1 0 1
 1 1 1

 Weights for XOR Round: 20 FixPoint: False
 0.35 0.15 0.15

 True table for XOR

 0 0 0
 0 1 1
 1 0 1
 1 1 1

According to the outputs above system successfully worked for the NAND, OR and

AND, but not for XOR gate, base upon the implementation design above we can assume that

the output can be shown as 4 points in the 2 dimensional coordinate system and there is a line

can separate all the 1 values from the 0 values, the graphic view is shown in Figure 13.

BTECH 451 "22

According to Figure 6 there is highly unlikely to separate the value (0,0) (1,1) and (1,0)

(0,1) with a single linear function, also the mathematical proof is,

 Assuming the is a line y = kx+b that can separate the value (0,0) (1,1) and (1,0) (0,1).

Figure 13

 Therefore,

 k+ b > 0 where there k!=0.

 k < 0

 b < 0

 Thus according to the functions above there is highly unlikely to have a k and b with k

+b>0 and k<0, b<0.

In order to implement a XOR I will compose an NAND and OR to a AND. The truth

table is shown below,

And the C# implementation is:

public static double[][] xorComp(double[][] input,
 Tuple<double[], int, bool, string> nand,
 Tuple<double[], int, bool,string>or,
 Tuple<double[], int, bool, string> and) {
 double[][] tbXor = new double[4][];
 for (int i = 0; i < 4; i++) {
 tbXor[i] = new double[3];
 foreach (double[] arr in input) {
 tbXor[i][0] = 1.0;
 tbXor[i][1] = dot_product(input[i], nand.Item1) > 0.5 ? 1.0 : 0.0;
 tbXor[i][2] = dot_product(input[i], or.Item1) > 0.5 ? 1.0 : 0.0;
 }
 }
 return tbXor;

Input Values NAND (A) OR(B) A and B

(0 , 0) 1 0 0

(0 , 1) 1 1 1

(1 , 0) 1 1 1

(1 , 1) 0 1 0

BTECH 451 "23

The output is:

 Truth table for XOR

 0 0 0
 0 1 1
 1 0 1
 1 1 0

According to the output above we can compute the XOR by combining NAND, OR

and AND.

3.2 Conclusion

The process above shows a clear implementation of a basic Classification machine

learning systems, the algorithm will auto correct the weight values under certain learning rate

value and eventually the dot product of input value and weights will give us the desired

output value, however for the XOR I've used a more complex model where the model will

take the result of 2 evaluation and put into a new process and the results show a clear

implementation.

BTECH 451 "24

4 Neural Networks

4.1 Introduction to the Neural Networks

This section provides a basic experiment of neural networks and neural network

programming using the Encog Artificial Intelligence Framework and the Computational

Network Toolkit (CNTK) [13]. Encog [14] is an AI framework that is available for both Java

and Microsoft. NET and the Computational Network Toolkit is a unified deep-learning

toolkit that describes neural networks as a series of computational steps via a directed graph.

4.2 Experiment With Iris Flower Dataset

Both Encog and CNTK will be used to analyse the Iris flower data set (aka Fisher’s Iris

dataset) which is a multivariate data set introduced by Fisher [15]. The dataset consists of 50

samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versiclor). Four

features were measured from each sample: the tenth and the width of the sepals and petals, in

centimetres. Based on the linear discriminant model created by Fisher[15] this data set

became a typical test case for many statistical classification techniques in machine learning.

BTECH 451 "25

The plotting using Matlab is shown above, the dataset been analysed by the feed-

forward algorithm, which the networks consisted of multiple layers of computational units,

usually interconnected in a feed-forward way. Each neurone in one layer has directed

connection to the neurones of the subsequent layer, which a similar neurone network was

described by McCulloch and Pitt [16].

BTECH 451 "26

4.2.1C# Experiment with Encog

The purpose is to create a program that generates a mode to predict the type of Iris,

based on the four measurements. Also, this program will allow us to easily change the model

type to any different model including, Feed-forward Neural Network, NEAT Neural Network

and Support Vector Machine. The reason why we need different model types is sometimes

the data is normalised differently by different type mode used. The program will split the

training data into a training and validation set. The validations will be held until the end to

see how er we can predict data that the model was not trained on.

Firstly, we define a VersatileMLDataSet object that will load from CSV file. We define

the five columns of the Iris data set. The following code is responding for such,

VersatileDataSource source = new CSVDataSource(irisFile , false ,CSVFormat .
DecimalPoint) ;

var data = new VersatileMLDataSet (source) ;

data . DefineSourceColumn (”sepal−length”, 0,ColumnType.Continuous); data .
DefineSourceColumn (”sepal−width”, 1, ColumnType.Continuous);
data . DefineSourceColumn (”petal−length”, 2,ColumnType.Continuous);

data . DefineSourceColumn (”petal−width”, 3, ColumnType.Continuous);
ColumnDefinition outputColumn = data . DefineSourceColumn (

”species”, 4,ColumnType . Nominal) ;

data . Analyze () ;

The Analyse method reads the entire file and determines the minimum, maximum,

mean and standard deviations for each column. Sense we are going to prodding the non-

numeric column (species) we use the feedforward neural network to normalise the data, cause

there is no negative values in numeric columns. The following C# code accomplishes this,

data . DefineSingleOutputOthersInput (columnMPG) ;
var model = new EncogModel (data) ;

model . SelectMethod (data , MLMethodFactory . TypeFeedforward) ;
model . Report = new ConsoleStatusReportable () ;

data . Normalize () ;

BTECH 451 "27

Then before we fit the model we hold back part of the data for the validation set. We

choose to hold back 30%, and we chose to randomise the data set with a fix seed value, which

ensures that we get the same training and validation set each time. This is a matter of

preference. Finally, we fit the model with a k-fold cross-validation of size 5. The code below

accomplishes the task,

data . LeadWindowSize = 1;

data.LagWindowSize = WindowSize;
model . HoldBackValidation (0.3 , false , 1001) ;

var bestMethod = (IMLRegression) model . Crossvalidate (5, false);
model . HoldBackValidation (0.3 , true , 1001) ;

model . SelectTrainingType (data) ;
var bestMethod = (IMLRegression) model.Crossvalidate(5, true);

The Cross-validation breaks the training dataset into 5 different combinations of

training and validation data, and the Cross-validation process do not use the validation data

that we previously set said, cause those data are for a final validation. At the end of the cross-

validation training the cross-validated error should be displayed. The cross-validation error is

an estimate how the model might perform on data that is not trained on. The implementation

is showing below,

Console.WriteLine(@”Training error: ”+ model.CalculateError(bestMethod,
model.TrainingDataset));

Console.WriteLine(@”Validation error:”+

model.CalculateError(bestMethod, model.ValidationDataset));
NormalizationHelper helper = data . NormHelper ;

Console . WriteLine (helper . ToString ()) ;

From this point, the model has been trained and the best model can be saved using

normal serialisation. Also, the data should be normalise in order to be used in the model, and

the data should be denormalised for further use.

The output from this program will look similar to the following. First the program

downloads the data set and begins training. Training occurs over 5 foods. Each fold uses a

BTECH 451 "28

separate portion of the training data as validation. The remaining portion of the training

data is used to train the mode for that fold. Each fold gives a different model; we choose the

model with the best validation score. We train until the validation score cease to improve,

which helps to prevent over-fitting.

1/5 : Fold #1

1/5 : Fold #1/5: Iteration #1 Training Error : 1.34751708, Validation Error :
1.42040606

1/5 : Fold #1/5: Iteration #2 Training Error : 0.99412971, Validation Error :
1.42040606

…

1/5 : Fold #1/5: Iteration #47 Training Error : 0.03025748, Validation Error :
0.00397662

1/5 : Fold #1/5: Iteration #48 Training Error : 0.03007620, Validation Error :
0.00558196

For instance, the first fold trains for 48 iterations before it stops, and the validation error

is a decent result. After fold 5 inc complete, the cross-validated score will be displayed which is

the average of all 5 validation sores. This should give us a reasonable estimate of how well the

model might perform on data that is was not trained with. Using the best mode from the 5

folds we now evaluate it with the training data and true validation data that we set aside

earlier

Training error : 0.023942862952610295
Validation error : 0.061413317688009464

The training error and the validation error is shown above, the shows the training error

is better than the validation error, this is because the model always tends to perform better on

data that trained with.

Finally, we loop over the entire dataset and display predictions. 149/150 is correctly

predicted and only 1 is mis-predicted. The following example shows the results,

[5.1, 3.5, 1.4, 0.2] −> predicted: Iris−setosa(correct: Iris−setosa)

BTECH 451 "29

[4.9, 3.0, 1.4, 0.2] −> predicted: Iris−setosa(correct: Iris−setosa)

...

[7.0, 3.2, 4.7, 1.4] −> predicted: Iris−versicolor(correct: Iris− versicolor)
[6.4, 3.2, 4.5, 1.5] −> predicted: Iris−versicolor(correct: Iris− versicolor)

[5.9, 3.2, 4.8, 1.8] −> predicted: Iris−virginica(correct: Iris− versicolor) ?
...

[6.3, 3.3, 6.0, 2.5] −> predicted: Iris−virginica(correct: Iris−virginica)

4.2.2 Experiment with CNTK

Similarly, the purpose is to create a program that generates a model to predict the type

of Iris, based on the four measurements. In order to perform this in CNTK, we take 10% of

the dataset as the test dataset, which is using the model to predict the outcome, and 90% of

the dataset as the training dataset, which will be using the training model.

Firstly, we need to define a training block, which contains 3 sub-blocks, the network

builders, learners and the data readers. The network builders create a network using CNTK’s

network description language [13], in this case, we will be using the SimpleNetworkBuilder,

which is the simplest Brainscript in CNTK [13] which creates one of the predefined networks

with limited customisation. The coding is inspired by CNTK example simple-2D[13].

SimpleNetworkBuilder = [

 # 4 input, 2 50-element hidden, 3 output
 layerSizes = 4:50*2:3

 trainingCriterion = "CrossEntropyWithSoftmax"

 evalCriterion = "ErrorPrediction"
 layerTypes = "Sigmoid"

 initValueScale = 1.0
 applyMeanVarNorm = true

 uniformInit = true

 needPrior = true
]

The learner uses the stochastic gradient descent(SGD) algorithm to train the model, which is

the desired trainer for most applications. In this case, the SGD has 5 parameters, the

epochSize = 0 means epochSize is the size of the training set, the minibatchSize parameter

BTECH 451 "30

denotes the number of samples between model updates, which a sample here is defined as

one vector or tensor flying through the system. The learning-rate and momentum parameter

define the behaviour of the learning algorithm, and the maxEpochs is the maximum number

of epochs to run.

 SGD = [

 epochSize = 0

 minibatchSize = 25
 learningRatesPerMB = 0.5:0.2*20:0.1

 momentumPerMB = 0.9

 maxEpochs = 10
]

The reader is how the CNTK reads the data in this case is the

CNTKTextFormatReader which will read the text- based CNTK format and it supports

multiple inputs combined in the same file.

 reader = [
 readerType = "CNTKTextFormatReader"

 file = "$DataDir$/Iris_Data_Train.txt"

 input = [
 features = [

 dim = 4 # 4-dimensional input data
 format = "dense"

]

 labels = [
 dim = 3 # 3-dimensional labels

 format = "dense"
]

]

Sense the train block defines the training network and the algorithm behaviour, the test

block will be easily defined, cause the test block is a part of training dataset.

BTECH 451 "31

Simple_Demo_Test = [

 action = "test"

 reader = [
 readerType = "CNTKTextFormatReader"

 file = "$DataDir$/Iris_Data_Test.txt"
 input = [

 features = [

 dim = 4 # two-dimensional input data
 format = "dense"

]
 labels = [

 dim = 3 # two-dimensional labels

 format = "dense"
]

]

Finally, the output method will read the test data and map the outputs from the

algorithm to human readable labels.

Simple_Demo_Output=[

 action = "write"

 reader = [

 readerType = "CNTKTextFormatReader"
 file = "$DataDir$/Iris_Data_Test.txt"

 input = [
 features = [

 dim = 4

 format = "dense"
]

 labels = [
 dim = 3

 format = "dense"

]
]

]

BTECH 451 "32

 outputNodeNames = PosteriorProb : labels

 outputPath = "$OutputDir$/SimpleOutput"

 format = [
 type = "category"

 labelMappingFile = "$DataDir$/IrisMapping.txt"
 sequenceEpilogue = "\t// %s\n"

]
]

The output of this program is 15/15, which means CNTK successfully predicted the

type of iris, also it is important to point out, I intentionally include the mis-predicted data in

Encog experiment in the test dataset and the CNTK gives the correct outcome of that data.

4.2.3 Experiment Conclusion
Since we get the decent result from both CNTK and Encog, then is pretty safe to say

both CNTK and Encog will be able to solve the Iris problem, however, the dataset size is

relatively small the difference in usage of CPU and memory is not obvious. Also, it is unwise

to run the dataset under multi-GPU or parallel computing, cause it will lead for saving more

time to analyse the data.

However, the Encog library does not require to customise our neural network, which

means the network is already pre-coded into the library, on the other hand, we build the

simple network in CNTK with 2 hidden layers and each layer contains 50 element nodes.

Thus, in this case when dataset gets complicated and the size of the dataset get increased, in

this case, is safe to say CNTK will be more flexible. Furthermore, we get 100% accuracy in

CNTK tests but 149/150 accuracy by using Encog, which I think the reason is we generated

a considerably complex network by sacrifice some of the performance.

Overall as an ML student, I think both CNTK and Encog have their specialties, but the

Encog is well-documented and CNTK just comes out last year. In further study, if I am facing

BTECH 451 "33

simple task I will prefer to use Encog instead of CNTK, but if I have the complex dataset

with a lot of data in it I will use the CNTK.

4.3.1Experiment Using Long Short-term Memory Network

Neural network based approaches have recently produced record-setting performances

in natural language understanding tasks such as word labelling. In the word labelling task, a

tagger is used to assign a label to each word in an input sequence. Specifically, simple

recurrent neural networks (RNN) and convolutional neural networks (CNNs) have shown to

significantly outperform the previous state-of-the- art conditional random fields (CRFs). This

paper investigates using long short-term memory (LSTM) neural networks, They were

introduced by Hochreiter & Schmidhuber [17], which contain input, output and forgetting

gates and are more advanced than simple RNN, for the word labelling task. To explicitly

model output label dependence, we propose a regression model on top of the LSTM

unnormalised scores. We also propose to apply LSTM to the Iris dataset [15](mentioned in

pervious section) and the ATIS dataset validated the effectiveness of the proposed models.

The recurrent neural networks (RNN) address this issue. They are networks with loops

in them, allowing information to persist.

In the above diagram, a chunk of neural network A, looks at some input x and outputs

a value h. A loop allows information to be passed from one step of the network to the next.

These loops make recurrent neural networks seem kind of mysterious. However, it is not

different than a normal neural network. A recurrent neural network can be thought of as

multiple copies of the same network, each passing a message to a successor. Thus, is the loop

is unrolled,

BTECH 451 "34

This chain-like nature reveals that recurrent neural networks are intimately related to

sequences and lists. They’re the natural architecture of neural network to use for such data.

One of the appeals of RNNs is the idea that they might be able to connect previous

information to the present task, such as using previous video frames might inform the

understanding of the present frame. Sometimes, only recent information need to be looked to

perform the present task. For example, consider a language model trying to predict the next

word based on the previous ones. If we are trying to predict the last word in “the clouds are

in the sky,” we don’t need any further context – it’s pretty obvious the next word is going to be

sky. In such cases, where the gap between the relevant information and the place that it’s

needed is small, RNNs can learn to use the past information.

But there are also cases where we need more context. Consider trying to predict the last

word in the text “I grew up in France… I speak fluent French.” Recent information suggests

that the next word is probably the name of a language, but if we want to narrow down which

language, we need the context of France, from further back. It’s entirely possible for the gap

between the relevant information and the point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to connect the

information.

BTECH 451 "35

In theory, RNNs are absolutely capable of handling such “long-term dependencies.” A

human could carefully pick parameters for them to solve toy problems of this form. Sadly, in

practice, RNNs don’t seem to be able to learn them. The problem was explored in depth by

Hochreiter [18] and Bengio, et al. [19], who found some pretty fundamental reasons why it

might be difficult.

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind

of RNN, capable of learning long-term dependencies. They were introduced by Hochreiter

& Schmidhuber [17] and were refined and popularised by many people in following work.

They work tremendously well on a large variety of problems, and are now widely used.

LSTMs are explicitly designed to avoid the long-term dependency problem. All

recurrent neural networks have the form of a chain of repeating modules of neural network.

In standard RNNs, this repeating module will have a very simple structure, such as a single

tanh layer.

The repeating module in a standard RNN contains a single layer.

LSTMs also have this chain like structure, but the repeating module has a different

structure. Instead of having a single neural network layer, there are four, interacting in a very

special way.

BTECH 451 "36

In the above diagram, each line carries an entire vector, from the output of one node to

the inputs of others. The pink circles represent point-wise operations, like vector addition,

while the yellow boxes are learned neural network layers. Lines merging denote

concatenation, while a line forking denote its content being copied and the copies going to

different locations.

In particular, RNNs have attracted much attention because of their superior

performance in language modelling and understanding tasks. In common with feed-forward

neural networks(mentioned in pervious section), an RNN maintains a representation for each

word as a high-dimensional real-valued vector. Critically, similar words tend to be close with

each other in this continuous vector space. Thus, adjusting the model parameters to increase

the objective function for a particular training example tends to improve performance for

similar words in the similar contexts.

In this paper we focus on spoken language understanding (SLU), in particular, word

labelling with semantic information. For example, for the sentence “I want to fly from Seattle

to Paris,” the goal is to label the word “Seattle” and ‘Paris” as the departure and arrival cities

of a trip, respectively.

In this paper we apply LSTM neural networks to the SLU tasks. LSTM has some

advanced properties compared to the simple RNN. It consists of a layer of inputs connected

to a set of hidden memory cells, a connected set of recurrent connections amongst the hidden

memory cells, and a set of output nodes. Importantly, input to and output of the memory

cells are modulated in a context- sensitive way. To avoid the gradient diminishing and

exploding problem, the memory cells are linearly activated and propagated between different

time steps. We further imply the basic LSTM architecture to the Iris dataset to exam the

performance in the arbitral dataset.

4.3.1 Recurrent Neural Network with LSTM

RNNs incorporate discrete-time dynamics. The long short- term memory (LSTM)

RNN has been shown to perform better at finding and exploiting long range dependencies in

the data than the simple RNN. One difference from simple RNN is that the LSTM uses a

memory cell with linear activation function to store information. Note that the gradient-based

error propagation scales errors by the derivative of the unit’s activation function times the

weight that the forward signal weight through. Using linear activation functions allows the

BTECH 451 "37

LSTM to preserve the value of errors because its derivative with regard to the error is one.

This to some extent avoids the error exploding and diminishing problems as the linear

memory cells maintains unscaled activation and error derivatives across arbitrary time lags.

The data is ATIS [22], which consists of 944 unique words and 127 different output

tags which can be found in CNTK project [20, 21], in the training section. Output has 127

dimension, each corresponding to a semantic tag in ATIS. Unseen words in test will be

mapped to the similar tags. A file provides such mapping from one word to the other, which is

useful to map low-frequency input or unseen input to a common input. In this case, the

common input is provided in the test dataset. To understand the dataset format a sample is

provided below,

BOS i would like to find a flight from charlotte to Las Vegas that makes a stop in St. Louis EOS

it is converted into the following text,

Sequence Past word Current word Next word Label

1 1:1 1:1 12:1 126:1

1 1:1 12:1 39:1 126:1

1 12:1 39:1 28:1 126:1

1 39:1 28:1 3:1 126:1

1 28:1 3:1 86:1 126:1

1 3:1 86:1 15:1 126:1

1 86:1 15:1 10:1 126:1

1 15:1 10:1 4:1 126:1

1 10:1 4:1 101:1 126:1

1 4:1 101:1 3:1 48:1

1 101:1 3:1 92:1 126:1

1 3:1 92:1 90:1 78:1

1 92:1 90:1 33:1 123:1

1 90:1 33:1 338:1 126:1

1 33:1 338:1 15:1 126:1

1 338:1 15:1 132:1 126:1

BTECH 451 "38

where the first column identifies the sequence (sentence) ID, which is the same for all

words of the same sentence. There are four input streams: PW, CW, NW, L. The input "PW"

represents the previous word ID, "CW" for current word, and "NW" for next word. Input

name "L" is for labels. Words "BOS" and "EOS" denote beginning of sentence and end of

sentences respectively.

Each line above represents one sample (word). E.g. the meaning of this line:

	 •	 the sequence ID is 1

	 •	 the current word is "charlotte" whose word ID is 101

	 •	 the previous word is "from" whose ID is 4

	 •	 the next word is "to" whose ID is 3

	 •	 the semantic label is "B-fromloc.city_name" whose label Id is 48.

	 And in this example, we use BrainScript to create one-layer LSTM with embedding

for slot tagging. The consolidated config file is ATIS.cntk. One can check the file (with some

comments) for details, especially how the reader is configured in ATIS.cntk.

reader=[ 
readerType = "CNTKTextFormatReader" file = "$DataDir$/ATIS.train.cntk.sparse"  
miniBatchMode = "partial" randomize = true  
input = [ 
featuresPW = [ 
alias = "PW" # previous word dim = $wordCount$  
format = "sparse"  
] 
featuresCW = [ 
alias = "CW" # current word dim = $wordCount$  
format = "sparse"  
] 
featuresNW = [ 
alias = "NW" # next word dim = $wordCount$  
format = "sparse"  
]  

1 15:1 132:1 17:1 126:1

1 132:1 17:1 72:1 126:1

1 17:1 72:1 144:1 71:1

1 72:1 144:1 2:1 119:1

1 144:1 2:1 2:1 126:1

BTECH 451 "39

labels = [ 
alias = "L" # label dim = $labelCount$

format = "sparse"]

]

]

The above section tells CNTK to use CNTKTextFormatReader to read data from the

file "$DataDir/ATIS.train.cntk.sparse". The same input names (PW, CW, NW, L) are used to

refer inputs (features and labels) provided in data files. The input is read into different feature

vectors: featuresPW, featuresCW, featuresNW and labels. These vectors are later used to build

LSTM node with BrainScript[12] as follows.

featuresPW = Input(inputDim) 
featuresCW = Input(inputDim) 
featuresNW = Input(inputDim) 
features = RowStack(featuresPW : featuresCW : featuresNW)

labels=Input(labelDim, tag="label")

embedding layer 
emb = LearnableParameter(embDim, featDim)

 featEmbedded = Times(emb, features) 
build the LSTM stack 
lstmDims[i:0..maxLayer] = hiddenDim 
NoAuxInputHook (input, lstmState) = BS.Constants.None

 lstmStack = BS.RNNs.RecurrentLSTMPStack (lstmDims,

cellDims=lstmDims, 
featEmbedded, 
inputDim=embDim, previousHook=BS.RNNs.PreviousHC,
augmentInputHook=BS.RNNs.NoAuxInputHook,

augmentInputDim=0, enableSelfStabilization=false)

lstmOutputLayer = Length (lstmStack)-1 LSTMoutput = lstmStack[lstmOutputLayer].h

BTECH 451 "40

The output with minibatch is 0.01884559* 10984, which means we successfully

analysed 10800 words(including beginning and ending tags).

4.3.2 Iris dataset with LSTM model

We further introduce the LSTM model to the Iris dataset, but to make the dataset

understandable for the CNTK reader, the format of dataset has been changed into decimal

number. Which is shown below,

1 |SL 4.8 | SW 3.0 | PL 1.4 | PW 0.1 |S 1

where the first column identifies the sequence (sentence) ID, which is the same for all

words of the iris flowers. There are five input streams: SL, SW, PL, PW, S. The input "SL"

represents Sepal length, "SW" for Sepal width, "PL" for Petal length and “PW" for Petal

width. Input name "S" is for Species. Since, there is only 150 data we reduce the size of the

network by changing the input dimension.

Each line above represents one sample (flower). E.g. the meaning of this line:

	 •	 the sequence ID is 1 and 1 only since there is not a combination of Iris

	 •	 the Sepal length is 4.8 cm.

	 •	 the Sepal width is 3.0 cm.

	 •	 the Petal length is 1.4 cm.

 •	 the Petal width is 0.1 cm.

	 •	 the semantic Species is 1 which indicates Iris setosa.

We build the neural network inspired by the ATIS example[22] provided by CNTK

project. The output with minibatch is 00000* 15, which means we successfully analysed 15

flowers which randomly selected in the dataset as the test dataset. The distribution of the the

dataset flows 5/5/5 (5 form the iris setosa specie, 5 form the iris virginica and 5 form the iris

versiclor). Hint, in this experiment the dataset does not have to be closely related.

BTECH 451 "41

4.3.3 Experiment Conclusion

The ATIS experiment shows we are able to build the LSTM neural network in order to

solve the spoken language understanding (SLU) problem, it successfully analysed 10984 tags

with only 2% error rate. This programme can be further used in .Net web recognising and

complex time series dataset classification problem. Furthermore, we successfully analysed

the Iris dataset with LSTM model, which as fast as section 4.2 the simpleNetWork with feed-

forward algorithm.

4.4 Experiment With Image Reader Experiment

This is the part of the CNTK where we will using CNTK more to its full potential. In

previous part modes have been created to solve simple binary and multi-class classification

problems. Though those models achieved good accuracy, they will not perform as well on

harder real-world problems. One principal reason is that the decision boundaries between the

classes are not typically linear. In this report I will learn to build more complex models and

creating an image classification system using the MNIST dataset[23] as our benchmark.

4.4.1 The MNIST Dataset

MNIST is a popular image dataset of handwritten digits. It is divided into a training set

of 60,000 examples, and a test set of 10,000 examples. This dataset is a subset of the original

data from NIST, pre-processed and published by LeCun et al[23]. The MNIST dataset[23]

has become a standard benchmark for machine learning methods because it is real-world

data, yet it is simple and requires minimal efforts in pre-processing and formatting. Each

instance of the data consists of a 28x28 pixel image representing one digit, with a label

between 0 and 9. Here are some examples:

BTECH 451 "42

Furthermore, CNTK comes with a python script that fetches and prepares the MNIST

data for CNTK consumption. By looking through the Python script[24], we found the Python

script takes the input image and re-shaped it to a 28*28 matrix with pixel’s grey-scale.

4. 4.2 Building the neural networks

In the previous work the softmax regression[12] can learn to separate data with more

than two classes. However, the separation boundaries are linear. However in most realistic

work the boundaries are trickier than linear, in that case, the feature space can be distorted in

order to bring the data closer to being linearly separable, and this is what a hidden layer can

do for us. So basically, the softmax regression solution can be inserted in a hidden layer

connected to the network’s input. Such a layer will learn to apply a feature mapping that

projects the data into a space where it is (hopefully) linearly separable. Then, the next layer

will receive an easier problem to deal with using its linear decision boundaries.

The softmax function is a generalisation of the logistic function. It maps a vector of real

values to a probability distribution. It is widely used for multi-class classification problems[24].

In this context, if we are trying to predict the class of an instance out of k possible classes, the

model would compute k-dimensional vector whose components represent the confidence

scores for each class. Then, the softmax function would map those scores to a posterior

probability distribution over the possible classes using the following formula[25]:

where x is our input vector, and w is the weight matrix, that includes both the model

parameters and the bias. We want to define a computational network that looks like the one

in the figure below. This network can be understood as a combination of three linear models,

each of which will be trained to separate one of the three classes from the other two. Then,

on top, we have the softmax layer that squashes the linear model scores into a probability

distribution. Thus, for each instance, the network outputs three probability values that sum up

to one. For example, if a given instance is of class (1), the model might output the following

probabilities (95%, 3%, 2%), which basically means that the probability of the instance

belonging to class (1) is 95%.

 

BTECH 451 "43

Let's get back to the task at hand: classifying images of hand-written digits. To do so, we

will build our first neural network with CNTK. Starting simple, our network will only have

one hidden layer., in CNTK’s MINIST example[23], we apply a scaling of (1.0 / 256.0) on

the features in order to have their values within the range 0 to 1. This normalisation helps

SGD to converge faster with better predictive performance. Then, we specify the topology of

our network. The follow code is responsible for such,

BrainScriptNetworkBuilder= [include "Shared.bs"

featDim = 28 * 28 # number of pixels labelDim = 10 # number of distinct labels

features = Input (featDim) 
featScaled = Constant (1.0 / 256.0) .* features labels = Input (labelDim)

hiddenDim = 200

h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1) z = DNNLayer (hiddenDim,
labelDim, h1, 1)

ce = CrossEntropyWithSoftmax (labels, z) errs = ErrorPrediction (labels, z) top5Errs =
ErrorPrediction (labels, z, topN=5)

featureNodes = (features) labelNodes = (labels) criterionNodes = (ce) evaluationNodes =
(errs) outputNodes = (z)

]

BTECH 451 "44

With a shared BrainScript,

DNNLayer (inDim, outDim, x, parmScale) = [ 
W = Parameter (outDim, inDim, init="uniform", initValueScale=parmScale,

initOnCPUOnly=true) 
b = Parameter (outDim, 1, init="fixedValue", value=0) z=W*x+b

].z

Also the SGD (Stochastic Gradient Descent) block[2] tells CNTK how to optimise the

network to find the best parameters. This includes information about mini-batch size (so the

computation is more efficient), the learning rate, and how many epochs to train. Here is the

SGD block for our example:

SGD = [ 
epochSize = 60000  
minibatchSize = 32 learningRatesPerSample = 0.003125

momentumAsTimeConstant = 0

maxEpochs = 30

]

where the epochSize indicates the number of samples to use in each epoch. An

intermediate model and other check point information are saved for each epoch. The

minibatchSize means using minibatch size of 128 for the first two epochs and then 1024 for

the rest, which in other words, it is the number of samples processed between model updates.

The learningRatePerSample means the learning rates per epoch with which each sample's

gradient updates the model, similarly the momentumAsTime constant is CNTK specifies

momentum in a minibatch-size agnostic way as the time constant. The maxEpochs indicts the

maximum number of epochs to run.

To run the example we got:

Final Results: Minibatch[1-625]: errs = 2.250% * 10000; top5errs = 0.040% * 10000

This model has an error of 2.25%, which is not too bad for image recognition.

However, by using Convolutional Neural Networks, we can improve the result even better.

BTECH 451 "45

4.4.3A deeper network with Convolutional Neural Networks

As we have seen, a simple neural network can achieve impressive results on the MNIST

dataset[22]. However, these results are not all that good when compared to what is out there

in the literature . But we can do much better if we introduce some concepts from CNN

theory[26].

A convolutional neural network (CNN) consists of model layers that apply local filters

and are stacked in a certain order. A convolutional layer applies a learned local linear filter,

e.g. of [3*3] pixels, to every pixel position in an image. Such filter capture local patterns

thanks to the local connectivity of its units. Whereas the input image has a single dimension

(gray-scale level), hidden layers maintain their spatial layout but store an entire activation

vector for each pixel position, where each dimension of the activation vector has its own filter

kernel, or feature map[27]. A feature map is basically a sliding window over sub-regions of

the layer's inputs, where each application of the map results in one dimension of the output

activation vector. A feature map is computed by performing a dot product between its filter

parameters and the corresponding input rectangle, which is slid across the entire 2D plane.

This linear filter operation is called convolution. Each feature map is called a depth slice.

Here is a simple example of how the feature map is applied.

To do so, an activation function layer has been used, which A non-linear activation

function is then applied to each unit output element of the convolutional layer. One of the

most commonly used functions is the Rectified Linear Unit[28], or ReLU, which is simply

BTECH 451 "46

max(0,x). Its practical advantage over a sigmoid function is that it does not suffer from the

vanishing gradient problem, and therefore learning can be more efficient.

The “Max Pooling” layer[28] has been also used after the activation function that aims

at reducing dimensionality. It divides the input into a set of non-overlapping regions, where

for each region it outputs the maximum activation value (independently for each depth slice).

By reducing each region into a single point, the image dimension is reduced. What this

achieves is two-fold: (1) it reduces the number of parameters and thus helps controlling

overfitting; and (2) it selects the salient activation values regardless of their location in the

region, which helps training models that are more resilient to things like rotation / translation.

Here is an example (from Wikipedia[25]) of max pooling with a window size of [2*2] (which

would reduce a hidden layer of [28 * 28 *16]to [14 * 14 *16].

Finally, after cascading several convolutional, activation function, and MaxPooling

layers, a CNN will have one or more fully connected, or dense, layers. Every unit in a dense

layer has connections to all activations of the previous layer, similar to regular neural

networks. Furthermore, he softmax layer for classification. We know the softmax from the first

part of the tutorial. The output is a probability distribution over the possible classes. Below is

a chart of a CNN with two alternating convolution / activation and MaxPooling layers, one

dense layer, and one softmax layer given by CNTK example[22].

BTECH 451 "47

 

 

4.4.4 The Network Definition

We define each sample as a 28* 28matrix rather than a vector. This is because a CNN

exploits local correlations in the image. Thus, we need to preserve this information. Second,

in addition to the layer we saw in the previous network, we define a cascade of convolutional

and max-pooling layers. We have two of each type. The core layer is ConvReLULayer which

is defined as a function in Shared.bs. Here is what this macro looks like:

ConvReLULayer (inp, outMap, inWCount, kW, kH, hStride, vStride) = [

convW = Parameter (outMap, inWCount, init="uniform", initValueScale=wScale) 
convB = ImageParameter (1, 1, outMap, init="fixedValue", value=bValue,

imageLayout="$imageLayout$")

conv = Convolution (convW, inp, kW, kH, outMap, hStride, vStride, zeroPadding=false,
imageLayout="$imageLayout$")

act = RectifiedLinear (conv + convB)

].act

The Convolution built-in function that convolves (filters) the image with a kernel.We will

also need the MaxPooling operation. This allows us to put together the final network

definition of our CNN that will learn to classify images of hand-written digits. Note the

reason why we have 2 MaxPooling layer is the method reduce the matrix by half util we get

[7*7], further reduce will cause a redundant in dataset:

BTECH 451 "48

wScale = 10 ; bValue = 1 # in Shared.bs imageW = 28  
imageH = 28  
labelDim = 10

features = ImageInput (imageW, imageH, 1, imageLayout="$imageLayou$")

featScaled = Constant(1/256) .* features) 
labels = InputValue (labelDim) 
kW1 = 5

kH1 = 5  
cMap1 = 16  
hStride1 = 1  
vStride1 = 1  
conv1_act = ConvReLULayer (featScaled, cMap1, 25, kW1, kH1, hStride1, vStride1)

pool1W = 2  
pool1H = 2  
pool1hStride = 2  
pool1vStride = 2  
pool1 = MaxPooling (conv1_act, pool1W, pool1H, pool1hStride, pool1vStride,

imageLayout="$imageLayout$")

kW2 = 5  
kH2 = 5  
cMap2 = 32  
hStride2 = 1  
vStride2 = 1  
conv2_act = ConvReLULayer (pool1, cMap2, 400, kW2, kH2, hStride2, vStride2, 10, 1)

pool2W = 2  
pool2H = 2  
pool2hStride = 2  
pool2vStride = 2  
pool2 = MaxPooling (conv2_act, pool2W, pool2H, pool2hStride, pool2vStride,

imageLayout="$imageLayout$")

h1Dim = 128  
h1 = DNNSigmoidLayer (512, h1Dim, pool2, 1)

BTECH 451 "49

ol = DNNLayer (h1Dim, labelDim, h1, 1) 
ce = CrossEntropyWithSoftmax (labels, ol)

errs = ErrorPrediction (labels, ol) 
featureNodes = (features) 
labelNodes = (labels) 
criterionNodes = (ce) 
evaluationNodes = (errs) 
outputNodes = (ol)

The output for the test results on the console:

Final Results: Minibatch[1-625]: errs = 0.83% * 10000;

ce = 0.02825477 * 10000

With an error of 0.83%, this model (unsurprisingly) greatly outperforms the previous

one. It took only 2-3 minutes and 15 epochs to train on a single GPU, and it took 15-20

minutes and 15 epochs to train on CPU-only.

4.4.5 Conclusion

After analysing all the samples in CNTK project[22], in an addition to wade variety of

built-in computation nodes, CNTK provides a plug-in architecture allowing users to define

their own computation nodes. There are 5 algorithms in CNTK: Feed-Forward, CNN, RNN,

LSTM and Sequence-to-Sequence. Compare to other toolkits like Encog, CNTK does offer a

highly concentrated approach which focus on solving analysing both similarity and accuracy

of the dataset.

Unfortunately, as a Machine Learning toolkit, CNTK does not have a produce 
method(for now), that can further use the analysing output to actually produce something. As

a analysing tool CNTK has a wade combination of analysing tricks, which in my perspective

it is easy to use and easy to learn. However, the reader in CNTK is confused, in LSTM mode

experiment the ATIS[22] dataset has been manually reshaped into CNTK supported reader

format.

Hence, in my perspective, CNTK do need a better data reader and CNTK should be

used as a part of a project not all of the project, in other words, we should pack the CNTK

result into other program or other code.

BTECH 451 "50

5 Overall Conclusion
For this year, my focus for Btech 451 is mainly on the algorithms for Machine Learning

(ML). Like I said in the beginning of this project, ML is coming into its own, with a growing

recognition that ML can play a key role in a wide range of critical applications, such as data

mining, natural language processing, image recognition, and expert systems. ML provides

potential solutions in all these domains and more, and is set to be a pillar of our future

civilisation , also in 1997, Tom Mitchell gave a “well-posed” definition that has proven more

useful to engineering types: “A computer program is said to learn from experience E with

respect to some task T and some performance measure P, if its performance on T, as

measured by P, improves with experience E. [31]”. For the past year, we’ve covered much of

the basic theory underlying the field of Machine Learning here, including the traditional

libraries Accord and Encog, also the new technology CNTK, but of course, we have only

barely scratched the surface. However, to implement the theories to the real life like the Iris

dataset experiment and two- coins flipping problem, gives us a deeper understanding of the

topics. One thing for sure, there are many libraries and approaches in ML and no one is

perfect, to choice the must suitable method for the scenarios appears to be the most necessary

step in the way of solving ML problems.

The traditional method like the Accord library and the Encog library can be considered

as the first step to the ML world, cause it is not only well- documented and it is based on

textbook programming languages like C# and Java. However, these method has its

limitations, for instance, when I use this method it feels a bit method-oriented, the user must

understand how this method works and when it can be used.

Cleary, CNTK appears to be the next thing for both Microsoft research and AL

community. However, in my perspective, CNTK is still in it’s beta phase, and it needs to be

improved. For instance, CNTK is computational toolkit which only provides us a way of

analysing which means it will not actually producing something, which is perfectly okey for

traditional method, cause it has so many other interface and libraries as the backup.

Sometimes CNTK feels a bit isolated by it’s own kind, unlike the Caffe [32] developed by the

Berkeley Vision and Learning Centre it has a forward method to actually predict something

really meaningful. However, CNTK does have the capability to involve GPU and multi-GPUs

to the computing part, and it is easy to implement. This capability generally reduces the run-

time by 90% on a considerably big dataset., which means the CNTK has a better potential

than the traditional algorithms.

BTECH 451 "51

Hence, in my point of view, ML is the calculator for the mathematicians, the

microscope for the doctors, or even the canvas for the artist and fingerboard for the musicals.

It still needs a better mind to drive, to navigate.

Note. All the experiments was run on the Microsoft Surface Pro 4 with Intel Core i5

and 8 GB Ram.

Reference

[1] Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of machine
learning. In Machine learning (pp. 3-23). Springer Berlin Heidelberg.

[2] Samuel, L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 3(3), 210-229.

[3] Nick, M (2016). An Introduction to Machine Learning Theory and Its Applications: A
Visual Tutorial with Examples. [Weblog]. Retrieved 4 April 2016, from https://www.toptal.com/
machine-learning/machine-learning-theory-an-introductory-primer

[4] Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. MIT
press.

Zhu, X. (2005). Semi-supervised learning literature survey.

[5] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of Machine
Learning, The MIT Press ISBN 9780262018258.

[6] Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron
algorithm. Machine learning, 37(3), 277-296.

BTECH 451 "52

https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://en.wikipedia.org/wiki/Mehryar_Mohri
https://en.wikipedia.org/wiki/Special:BookSources/9780262018258

[7] Rosenblatt, Frank (1957), The Perceptron--a perceiving and recognizing automaton.
Report 85-460-1, Cornell Aeronautical Laboratory.

[8] Norvig, P. R., & Intelligence, S. A. (2002). A modern approach.

[9] Dhillon, I. S., Guan, Y., & Kogan, J. (2002). Iterative clustering of high dimensional text
data augmented by local search. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE
International Conference on (pp. 131-138). IEEE.

[10] Bradley, P. S., & Fayyad, U. M. (1998, July). Refining Initial Points for K-Means
Clustering. In ICML (Vol. 98, pp. 91-99).

[11] Arthur, D., & Vassilvitskii, S. (2007, January). k-means++: The advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp.
1027-1035). Society for Industrial and Applied Mathematics.

[12] Bishop, C. M. (2006). Pattern Recognition. Machine Learning.

Nick, M (2016, no-date). An Introduction to Machine Learning Theory and Its Applications:
A Visual Tutorial with Examples. [Weblog]. Retrieved 4 April 2016, from https://
www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
[13] Microsoft/CNTK. (2016). GitHub. Retrieved 22 October 2016, from https://github.com/
Microsoft/CNTK

[14] Encog Machine Learning Framework. (2016). Heatonresearch.com. Retrieved 22 October 2016,
from http://www.heatonresearch.com/encog/

[15] The iris dataset can be download within follow link, https://archive.ics.uci.edu/ml/
machine-learning-databases/iris/iris.data

[16] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

[17] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735-1780.

[18] Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma,
Technische Universität München, 91.

[19] Bengio, Y., Paolo Frasconi, and P. Simard. "The problem of learning long-term
dependencies in recurrent networks." Neural Networks, 1993., IEEE International Conference on.
IEEE, 1993.

[20] Microsoft/CNTK. (2016). GitHub. Retrieved 22 October 2016, from https://github.com/
Microsoft/CNTK/blob/master/Examples/Text/ATIS/Data/ATIS.vocab

[21] Microsoft/CNTK. (2016). GitHub. Retrieved 22 October 2016, from https://github.com/
Microsoft/CNTK/blob/master/Examples/Text/ATIS/Data/ATIS.label

[22] Microsoft/CNTK. (2016). GitHub. Retrieved 22 October 2016, from https://github.com/
Microsoft/CNTK/tree/master/Examples/Text/ATIS

BTECH 451 "53

https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer

[23] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.
(2016). Yann.lecun.com. Retrieved 22 October 2016, from http://yann.lecun.com/exdb/
mnist/

[24] Wang, X., Fouhey, D., & Gupta, A. (2015). Designing deep networks for surface

normal estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 539-547).

[25] Softmax Regression - Ufldl. (2016). Ufldl.stanford.edu. Retrieved 22 October 2016, from
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression

[26] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).

[27] Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013, May). Improving deep neural
networks for LVCSR using rectified linear units and dropout. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing (pp. 8609-8613). IEEE.

[28] "Convolutional Neural Networks (LeNet) – DeepLearning 0.1 documentation".
DeepLearning 0.1. LISA Lab. Retrieved 31 August 2013.

[29] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735-1780.  
[30] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(02), 107-116.

[31] Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45, 37.

[32] Caffe | Deep Learning Framework. (2016). Caffe.berkeleyvision.org. Retrieved 23 October 2016,
from http://caffe.berkeleyvision.org

BTECH 451 "54

Appendix
R 5 5 5 6 5 7 5 8 5 9 4 9 3 9 2 9 1 9

1 4.6896.8334.79 6.03 4.8296.93335.1948.18145.0088.4453.77388.0463.1689.18151.8868.9951.01669.2114
2 4.7477.25 3.8 6.03 3.75 7.3645.0528.2745.2589.00834.75 8.8833.3248.90411.82288.666660.9259.0753
3 6.6674.9984.0975.84 4.6486.5834.28 8.405714.7859.0854.4 9.2922.7 9.178 2 8.90411.2228.792
4 5.7344.2654.92 6.45 4.763887.46114.7428.24 5.4268.86853.59338.94282.9759.3881.9949.0281.17599.051
5 3.8765.6255.19 6.4 5.56 7.11884.7547.9814.6 9.2413.95 9.0123.0669.3472.05398.80830.7234128.904
6 4.4366.3335.1 6.33 5.5347.52754.09047.5254.9429.27773.9859.65 2.6 8.845181.86579.02 1.22239.04333
7 3.9 5.47 4.45 6.1654.44 6.9 4.7 8.000315.20838.79 4.1 9.1082.9589.2221.7149.05650.7133339.0341
8 4.47 4.21 5.45 6.87 3.0476.49 4.9377.73074.94299.58333.89889.38 3.0368.99441.5668.78191.22229.15818
9 4.93 6.6874.6686.3854.8877.0935.09688.28164.7419.2344.3538.65332.7818.69851.916669.163350.9920638.75

10 5.49 4.14 4.49 6.25 4.75 7.5054.4318.2745.24 8.9154.0147.7613.058339.02632.35559.117140.884128.84
11 5.4 3.8754.3165.98 4.8977.19 5.2848.0284.7939.1523.78759.0452.9758.7131.97429.4 0.9588.79126
12 4.37 5.75 4.1255.45 5.00317.45834.92298.34 5.3339.0113.98 8.78 2.9998.9 1.69159.03540.9799.36349
13 4.81 5.96 5.0037.3335.9088.25 5.1637.3474.7118.540874.01778.7633.20838.68022.059029.05271.06889.55
14 5.05 4.33 3.25 6.0095.05 7.14455.19748.0254.64169.1216933.88 8.8953.2638.9722.20839.00491.00058.6805
15 4.5 5.6395.1 5.9884.3556.755715.5478.0354.75839.00563.83339.2183.25289.29882.4759.055550.81258.7226
16 5.5 4.06 5.1786.4865.4 7.5924.6678.14 5.14728.93333.71199.32 3.18889.06642.5278.8671.18 9.28
17 6.1 4.83 3 5.49 5.27 6.4355.5837.791334.36669.16043.71958.82 3.050599.170832.021119.33 0.56399.3101
18 5.14 3 4.9156.3794.5596.3095.17 7.87615.2889.04583.54168.99463.01669.05641.90558.6161.18418.58
19 5.11 4.29 4 5.98 3.27 6.1985.1947.8964.8429.2043.91668.8873.06799.5 2.3478.98750.9388.929
20 4.49 5.67 4.26 5.51 4.6867.34 4.4769 8 5.38 8.85 4.3 8.99632.2859.14442.68699.12770.91668.63154
21 5.04 3.5 5.166 7 5.1157.55 5.3897.69724.7068.93883.64239.1162.96778.6681.9789.0761.11578.8875
22 4.92 3 4.1255.7375.0736.9415.3198.3354.9739.02774.1028.92632.62088.7932.1888.9271.06199.0916
23 4 5.44 4.8756.02 5.18 7.2134.5997.49 4.49819.083335 8.69073.490210 2.5699.31 0.95999.5833
24 4.47 5.67 4.7126.1625.1317.8124.69448.2884.59 9.1184.06039.4122.0638.81822.11858.75 1.14668.8842
25

4.7398.5 5.1585.9394.8127.0675.2178.38514.37 9.0043.9819.2 3.20958.8752.3819.25 0.92489.2

BTECH 451 "55

R 5 5 5 6 5 7 5 8 5 9 4 9 3 9 2 9 1 9

26 4.7398.5 5.1585.9394.8127.0675.2178.38514.37 9.0043.9819.2 3.20958.8752.3819.25 0.92489.2
27 5.12 2.75 0 5.89 5.34 6.47 5.131258.16115.1858.9454.02 8.9883.02088.8912.0839.4161.00519.252
28 3.1664.97 4.0625.88 4.49 6.81 5.0758.0464.93 8.7554.4828.9832.52389.010712.5118.9741.04218.86
29 5.6483.333 2 5.7 5.0967.21 4.76097.85275.3648.6694.41668.9272.7679.2981.7479.02221.38554428.91666
30 5.98 4.2 4.56 6.1774.13 7.0814.43717.641664.6418.7324.32278.9 2.9968.9771.96038.97 0.9888.8333
31 5.5 4.93 3.9645.7674.99 8.1254.5 7.18614.7899.1753.5579.06072.88638.95 2.03429.3541.2058.834
32 6.8334.95 4.2945.88 4.8937.1114.5597.76945.0819.0833.86669.07342.83 9.1662.04339.170790.77639.01
33 4.05 6.1 5.35 7.33 5.0696.3034.90928.01945.6719.1843.3128.8922.83339.0382.11 9.40131.21 8.9055
34 6.5834.6254.2995.6 4.76 7.25 5.201 8 4.7939.1974.06259.166662.30559.1872.2798.7770.72919.1906
35 5.04 4.08 5.1446.2335.0226.9115.2598.13435.1298.6453.36948.6863.39 8.8781.97029.131940.96048.86904
36 4.1385.3474.84 6.06 4.4687.4 4.6447.84445.08378.7093.36258.8993.26 8.9131.764928.548331.09 8.95
37 4.56115.78 4.3776.04 5.0037.0924.6258.1 4.38389.2884.1348.6733.22 9.13331.42 9.11351.0189.10777
38 5.65 4.7065.5 8 4.86 7.3514.4347.70594.89 8.7164.0798.57972.5048.792852.31118.98191.15039.746
39 4.03 5.69 5.46 6.46 4.9957.5 3.7 7.58775.1259.1223.6558.88543.25698.9712.1879.1751.1339.033
40 5.33 8 4.9476.6755.64 7.3254.2958.3345.4668.6883.4978.8142.5779.4472.66219.01660.8339.0198
41 5.17 3.27 4.66 6.0555.3326.9625.3758.0034.58 8.7134.8 9.2852.9958.68341.791669.02751.19088.79166
42 4.66 6.66 4.33 5.64 5.4616.814 5 8.18374.6838.9033.7354.75 3.4549.18651.83888.86651.15139.064
43 4.2 5.6125.14 5.9365.1667.0294.7378.0755.35 8.48363.9858.6932.45 9.2582.13618.72421.20478.825
44 4 5.29 4.42 6.18 5.17 7.0095.87 8.5985.0558.8813.3 8.87842.8929.08211.93559.22220.76389.0404
45 4.99 6.6 4.64 6.038 2 6.25 5.0518.0974.57639.0483.7819.01872.9059.16661.97619.14440.980159.0634
46 4.566 8 5.47 6.8334.6386.6714.07147.67034.4978.704984.12028.72 2.69018.86662.07228.8750.881949.225
47 4.24 5.56 3.64 5.8365.1728.0276.0953 8 5.0129.256253.42 8.6873.05218.79331.8888.936660.46669.333
48 5.75 4.7234.41 6.22 4.5577.5624.05957.00594.2879.25833.7258.95012.3739.05831.6699.12971.29689.32
49 4.5 5.63 4.9656.211 1 5.9 4.9827.9133.4 8.96 7.7 9.08412.6527779.0182.75748.9810.9759.1
50

3.9865.1444.5846.0764.72776.29 3 7.62945.23 8.79763.56 8.6 2.59388.4161.8449.25 0.98039.125

BTECH 451 "56

