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1 Introduction 
	 Learning is the act of  acquiring new, or modify and reinforcing, existing knowledge, behaviours, skills 
values, or preferences and may involve synthesising different types of  information. Since the inception of  the 
computer era, researchers have been striving to implant such capabilities in computers. Solving this problem has 
been, and remains, a most challenging and fascinating long-range goal in artificial intelligence (AI). The study 
and computer modelling of  learning process in their multiple manifestations constitutes the subject matter of  
machine learning (ML). 

  1.1 The objective of  machine learning 

	 Machine leaning is a type of  artificial intelligence approach, according to Samuel 

(1959), ML provides computers with the ability to learn without being instructional 

programmed. Furthermore, ML focuses on the development of  computer programs that can 

teach themselves to reproduce and adjust when exposed to new data. Nick [1] has pointed 

out, ML process can be subdivided into two parts supervised machine learning and 

unsupervised machine learning, which both part focused on different conclusions given by a 

bunch of  data. In this report, I will give a basic implementation of  both supervised and 

unsupervised machine learning process。 

2 Unsupervised Learning 

	 Unsupervised learning is a type of  machine learning which algorithm will be used to 

draw inferences from datasets consisting of  input data without labelled response. In this 

report I will focus on the most common unsupervised learning method cluster analysis, which 

is used for exploratory data analysis to find hidden patterns or grouping in data, furthermore, 

I will implement the k-means algorithm which was first mentioned by MacQueen[2] and the 
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idea goes back to Steinhaus [3] to compute the Euclidean distance matrix for measuring the 

similarity of  given data set. 

  2.1.1 k-means algorithm 

	 k-means clustering is a method of  vector quantisation which aims to partition n 

observations into k clusters in which  each observation belongs to the cluster with the nearest 

mean, serving as a prototype of  the cluster. According to Tuceryan and Jain [4] results given 

by k-means algorithm in a partitioning of  the data space into Voronoi cells. 

The mathematical proof based upon Selim and Lsmail (1984), 

	 Given a set of  observations (p1, p2, …, pn ), where each observation is a 2- dimensional real vector, 
k- means clustering aims to partition the n observation into k (k ≤ n) sets S = {S1, S2, …, Sn} so as to 
minimise the within-cluster sum of  squares( the linear function sum of  squares will lead the cluster into 
Voronoi cells), which in other words, its objective is to find the root for: 

  

	 Furthermore, In mathematics, a Voronoi diagram is a partitioning of  a plane 

into regions based on distance to points in a specific subset of  the plane [5] 

The mathematical deduction of the Voronoi diagram,  

	 Let X  be a metric space with distance function d. Let K be a set of  indices and let (P_k) {k ϵ K} be 
a tuple (ordered collection) of  nonempty subsets (the sites) in the space X. The Voronoi cell, or Voronoi 
region, R_k, associated with the site P_k is the set of  all points in  X whose distance to P_k is not greater 
than their distance to the other sites P_j, where j is any index different from k. In other words, if   d(x, A) 
= inf  { d(x, a) |a ϵA\} denotes the distance between the point  x and the subset A then, 

 R_k = {x ϵ X| d(x, P_k) ≤ d(x, P_j) for all j ≠ k } 
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	 In Figure 1 the Voroni diagram( generated by http://alexbeutel.com/webgl/

voronoi.html) of  14 points and in Figure 2 the outcome of  10000 points in 14 clusters which 

calculated by k-means algorithm ( base on Computing the least euclidean distance between 

observations and the cluster centroid), 

 

Figure 1                                   Figure 2 
  

	 It is clear, that the behaviour of  the k-means algorithm measured by the 

Euclidean distance matrix is similar to the way we generate the Voroni diagram.  

  2.1.2 Standard Algorithm 

	 The algorithm uses an iterative refinement technique, which the algorithm proceeds 

two steps:  

1. Initialise centroids based upon the k value and assign each observation into the 

cluster, which firstly I will set each cluster at least one value to make sure that there will 

not be an empty cluster, after that each data in the raw observation list will be given a 

random cluster number, the C# implementation is shown below, 

public static void initializeCentroids (int numberOfClusters, 
                                        List<DataPoint> data) {
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    Random random = new Random(numberOfClusters);
    for (int i = 0; i < numberOfClusters; i++) {
        data[i].Cluster = i;
    }
    for (int i = numberOfClusters; i < data.Count; i++) {
        data[i].Cluster = random.Next(0, numberOfClusters);
    }
}

	 The method above takes n (n= number of  clusters) elements from the raw 

observations and assigns them into n different clusters. The remaining observation will be 

assigned into randomly selected clusters. The method have O(n) for runtime. 

	 Also, in order to calculate the means for all the clusters we have grouped observation 

data into arrays by their cluster value. 

public static Boolean calculateMeans ( List<DataPoint> data, 
                                       int clusterNumber, 
                                       DataPoint[] clusters) {

    if (emptyCluster(data)) return false;
    List<DataPoint>[] clusterList = new                                                                                                                                                           
List<DataPoint>[clusterNumber];
    for (int i = 0; i < clusterNumber; i++) {
        clusterList[i] = new List<DataPoint>();
    }
    foreach (DataPoint i in data) {
        clusterList[i.Cluster].Add(i);
    }
    double height = 0.0;
    double weight = 0.0;
    for (int i = 0; i < clusterNumber; i++) {
        foreach (DataPoint dp in clusterList[i]) {
            height += dp.Height;
            weight += dp.Weight;
        }
        DataPoint dpi = new DataPoint();
        dpi.Height = height / clusterList[i].Count();
        dpi.Weight = weight / clusterList[i].Count();
        clusters[i] = dpi;
        height = 0;
        weight = 0;
    }
    return true;
}
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	 The calculatedMeans method takes grouped observations as the input and produce an 

array of  the cluster means as the centroid of  the cluster, the method has O(n) for runtime.  

	 Overall, step 1 randomly initialises the cluster and produce the mean of  each cluster 

as new data points in terms of  the centroid for the cluster. The runtime is O(n).  

The demonstration for step 1 is shown in Figure 3, 
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n initial “means” ( in this case n = k= 3) the first 3 observations been assigned to 3 

different clusters ( represented by 3 different colours, green; yellow and red), the rest 

observations has been randomly assigned into the clusters (we are not interesting the random 

selection therefore the colour is shown as blue). 

2. In this stage the data point moved from a cluster to a new one. I updated the value 

stored in its Cluster property based upon compering the difference between the observation 

and the all the centroids, then I choose the cluster with the minimum difference and move the 

data point to that cluster. The following code is responsible for this, 

public static bool updateClusterMembership ( int numberOfClusters, 
                                             List<DataPoint> data, 
                                             DataPoint[] clusters) {
  bool changed = false;
  double[] distances = new double[numberOfClusters];
  for (int i = 0; i < data.Count; i++) {
      for (int k = 0; k < numberOfClusters; k++) {
          distances[k] = elucidanDistance(data[i], clusters[k]);
}

      int newClusterId = miniIndex(distances);
      if (newClusterId != data[i].Cluster) {
          changed = true; 
          data[i].Cluster = newClusterId;
      }        
  }
  if (changed == false)
      return false;
  if (data.Count()==0) return false;
  return true;
}

Computing the least euclidean distance and putting the data into the right cluster. The 

sum of  squares will be given as the squared euclidean distance, the C# implementation is 

shown below, 

public static double euclideanDistance ( DataPoint data, 
                                         DataPoint potentialMean) {
    double diff = 0.0;
    diff = Math.Pow(data.Height - potentialMean.Height, 2);
    diff += Math.Pow(data.Weight - potentialMean.Weight, 2);
    return Math.Sqrt(diff);
}
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Thus, the outer-most loop iterates the items of  all the observations, the next loop within 

this one calculates the Elucidan distance between each item in the data collection and the 

means of  clusters stored in cluster array the result of  each of  the these comparisons in an 

array called distances, after that, the code takes the minimal value in the array and checks 

whether this data point is already in that cluster. If  the data point is not in the cluster with the 

minimum distance I move the data there by changing its cluster property. The step overall 

runtime is O(n). 

The demonstration of  updating cluster membership method is given in Figure 4, 

The value of  centroid of  each of  the k clusters becomes the new mean, in Figure 

2 the mean of  green is (1, 9), the mean of  yellow is (10.5, 4.17) and the mean for read 

is (17, 10.33).  
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Hint, the idea behind the K-means Clustering algorithm is that we are trying to 

move the items into more suitable clusters until there is no change in cluster 

membership happens 

Also, if  the observation has pre-defined clusters the algorithm will be able to 

distinguish the hidden patten, in Figure 5 I have a data set with three "pre-defined" 

clusters, and I set the k value to 3 for the algorithm the result is given below, 

 

Figure 5 

However if  the k value is greater than 3, then some big cluster will start to 

fragment into smaller parts and the demonstration is shown in Figure 6, 
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Figure 6 

Similar to Figure 6 with greater k value the big data will start to fragment into 

smaller parts but the small clusters will hold unchanged, and the demonstration is 

shown in Figure 7, 
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Figure 7 
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2.1.3 A coin-flipping experiment 
 

	 In order to illustrate what k-means algorithm can do we consider a simple coin-

flipping experiment in which we are given a pair of  coins A and B of  unknown biases,       

and       respectively (that is, on any given flip, coin A will land on heads with probability  and 

tails with probability 1-     and similarly for coin B). Our goal is to estimate the biases by 

repeating the following procedure 10 times: randomly choose one of  the two coins ( with 

equal probability), and perform ten independent coin tosses with the selected coin. Thus, the 

entire procedure involves a total of  100 coin tosses. The following code is responsible for this, 

  static void Main(string[] args) {
    KMeans kmeans = new KMeans(2);
    double A_Biases = 0.9;             // The probability to head(A)
    double B_Biases = 0.1;             // The probability to head(B)
    int expRand = 10;                  // Rand number
    int toess = 10;                    // Toss for a rand
    double [][] observations = new double [expRand][];
    for (int i = 0; i < expRand; i++) {
        double X = oneTime( A_Biases, B_Biases,toess);
        observations[i] = new double[2];
        observations[i][0] = dataNormalization(X,toess);
        observations[i][1] = 10 - observations[i][0];
        toess = toess + 10;
    }
    int[] labels = kmeans.Compute(observations);
    var temp = kmeans.Clusters.Centroids;
    for (int i=0;i<temp.Length;i++) {
        for (int j=0;j<temp[i].Length;j++){
            Console.Write(temp[i][j]+" ");
        }
    }
}

The code above references the Accord.MachineLearning library( from https://

www.google.co.nzurlsa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj-0ebykZHNAhVk

xqYKHWKJCdgQFggmMAA&url=http%3A%2F%2Faccord-

framework.net%2F&usg=AFQjCNELitjh3lNuYxGYyed5FUNKCvi8ug).  Library offers the 

framework for k-means algorithm which generating the clusters toward the euclidean 

distance.  
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2.1.4 Experiment hypothesis    
Assuming k-means algorithm is going to generate 2 clusters in terms of  2 coins’s 

toss, the centroids for the cluster will be the bias for the coin (      and     ). For 

example if  experiment one takes A coin, and got results for TTTHTHTHTH which 

will be  recorded as point (4, 6) which x= number for heads and y = number for tails. 

However, assuming k-means algorithm will be performing differently by the 

difference between two biases ( d =|     -      | ) , and it is impossible to have a coin 

with 100% bias ( will only get heads or tails). 

2.1.5 Methodology  

We set the biases from 0.1 to 0.9 for the possibility to heads and run the 

experiment for 50 times. We exam the standard deviation and mean regarding to the 

expecting bias value. 

2.1.6 result 
 

Based upon appendix A, we take the total difference between result value and 

the expected value (|E    - R    | + |E     - R      |). Also the total standard deviation 

of  two values. The result value is shown below, 

Difference for 2 biases Total difference Total sd

0 0.278 2.269

1 0.79 0.39

2 0.33 0.309

3 0.212 1.09

4 0.131 0.525

5 0.179 1.294

6 0.115 0.279

7 0.101 0.37

8 0.039 0.417
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2.1.7 Experiment conclusion  

Based upon the results stated above, it is clear that k-means algorithm will 

preform well when the difference between two biases is considerably large. Generally, 

the expected bias value is within the range offered by the standard deviation.  

In this experiment we group the rand on similar toss together. For e.g. all tosses 

that have 7 heads are grouped into a single cluster as their bias is vary similar and 

Other cluster will be similar to this. Therefore, this type of  Clustering is called 

partition or iterative clustering ( Dhillon,Guan & Kogan, 2002). The algorithm 

converges even though sometimes it may take exponential time. Although, in practice 

it converges very fast. Also the algorithm might get stuck in a local minimum that has 

an arbitrarily bad cost 

2.2 Overall Conclusion  

The k-means algorithm accepts two inputs. The data itself, and “k”, the number 

of  cluster. The output is k clusters with input data partitioned among them. There 

are different measures for the notion of  similarity or dissimilarity ( AKA distance) like 

the Euclidean distance, Manhattan Distance or Cosine similarity etc. The reason why 

we need so many different measurements is in the “real world” things are a bit 

complicated when the items are not points but objects with some attributes ( for e.g. 

the content of  an article, location of  a person). Thus, in this case we need to design 

our own distance measure in order to suit the scenarios. For instance, we want to 

check if  news articles talk about same topic, a simple distance measurement can be to 

find the entities in an article and compare their frequencies. Saying two articles with 

common words like  Donald Trump, Hillary Clinton, test “might” talk about same 

topic. For a real world application, finding a good distance measure requires  lot of  

work, because the measurement should be efficient but also reasonably accurate. 

The algorithm do have some random generating, because the initialising 

centroids, according to Bradley and Fayyad (1998), initial points is very critical to 

avoid local minima and a good set of  initial points are important as it influences both 

quality of  clusters and also the running time of  the algorithm. Paper by Arthur and 

Vassilvitskii shows that if  picking the next candidate centre with probability 
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proportional to its minimum distance squared from the current set of  clusters allows 

for provable guarantees on the quality of  the solution returned by k-means. However, 

the actual results will be slightly different but the trade-off  in performance is worth to 

consider. 

There is no way to guarantee the running time, cause the algorithm might run 

into a local local optimum, but generally the k-means algorithm can take exponential 

time to converge. 

As my project , I did clustering of  simple scenario with three Gaussian 

distributions, non-linear scenario and some random data set. The task showed 

something like this: Lets say if  you record the informations like height, weight or age 

we can group the information into clusters and the cluster can be represented into 

patterns ( Bishop, 2006), in other words, we like to think of  ourselves as individuals 

but we are actually a pattern with online DNA which includes we married or single, 

we educated or not, we are rich or poor. The data mining cluster can be the tool to 

reveal our true nature. 
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2.3 Regression Machine Learning Systems 

In regression machine learning systems I will be interested in the best fitted linear 

function y= kx + b, for given cost function                                                    ,and in this case I 

have a set of  points with 2 dimensional values (x,y). The initial prediction has been given as        

y= 12 +0.2x (k= 0.2 and b=12), the graphic view is shown in Figure 8. 

   Figure 8. 

In order to optimize the value in y= kx +b; we reference the simplex, the truncated 

Newton method and the BFGS method from the DotNumerics libraries (from http://

www.dotnumerics.com/NumericalLibraries/). Three methods will optimise the standard 

form function for given cost function. The process is shown below. 
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2.3.1 Simplex Method 

Simplex simplex = new Simplex();
double[] simplexMinimum = simplex.ComputeMin(bananaFunction,     

   initialGuess);

public double bananaFunction(double[] x) {
    double sum = 0;
    for (int i = 0; i < setOfPoints.Length; i++) {
        Func<double, double, double, double> h = (b, y, z) => b + y * z;
        sum = sum + setOfPoints[i].Y - h(x[1], x[0], setOfPoints[i].X);
    }
    double result = Math.Pow(sum, 2) / (2 * setOfPoints.Length);
    return result;
}

The C# code above allows simplex.ComputeMin() method to take the 

initialGuess(k=0.2, b=12) and the cost function(given by method bananaFunction()) as input 

to generate an array of  best fitted k value and b value, and we will take the final values either 

after 1000 evaluation or the difference between E_i and E_i+1 is small than 1e -5. The results 

are shown in Figure 9. 

       Simplex Method 

        Figure 9. 
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2.3.2 Truncated Newton Method 

TruncatedNewton tnewt = new TruncatedNewton();
double[] tnetMinimum = tnewt.ComputeMin(bananaFunction,
                                        bananaGradient,
                                        initialGuess);
public double[] bananaGradient(double[] x) {
    double sum = 0;
    double sum2 = 0;
    double[] relust = new double[2];
    for (int i = 0; i < setOfPoints.Length; i++) {
        Func<double, double, double, double> h = (b, y, z) => b + y * z;
        Func<double, double, double> h0 = (a, b) => 1.0;
        Func<double, double, double> h1 = (a, b) => a;
        sum = sum + (h(x[1], x[0], setOfPoints[i].X) - setOfPoints[i].Y);
        sum2 = sum2 + (h(x[1], x[0], setOfPoints[i].X) - setOfPoints[i].Y) * x[0];
    }
    relust[0] = sum / setOfPoints.Length;
    relust[1] = sum2 / setOfPoints.Length;
    return relust;
}

The C# code above allows tnewt.ComputeMin() method to take bananaFunction(given 

by the code in simplex section), bananaGradient(given by bananaGradient which takes input 

array with b value, k value and output the differentiations for standard form linear equation 

y=kx+b) and the initialGuess(k=0.2 and b=12) to generate an array of  best fitted k value and 

b value for given cost function. The results are shown in Figure 10. 

          Truncated Newton Evaluation 

   Figure 10 
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2.3.3 BFGS Method 

L_BFGS_B lbfgsb = new L_BFGS_B();
double[] lbfgsbMin = lbfgsb.ComputeMin(bananaFunction,
                                       bananaGradient,               

initialGuess);

Similarly, the C# code above allows bfgsb.ComputeMin() method to take 

bananaFunction (given by  bananaFunction() in the simplex method section), bananaGradient 

(given by bananaGradient() in Truncated newton method section) and the initial Guess( where 

k=0.2 and b= 12) to compute the desired output, which is shown in Figure 11. 

  BFGS Evaluation 

Figure 11. 

2.3.4 Conclusion   

The evaluation above gives a clear implementation of  the basic ML, the system will 

begin with initial guess where k=0.2 and b=12, for every evaluation in the process both k and 

b value will be adjusted under hidden algorithm in the method which referenced in the 

DotNumerics libraries. Three methods return an almost same result, therefore, the 

implementation is a successful implantation of  the regression machine learning systems. 
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3 Supervised Learning 

	 In supervised learning, we are given a data set and already know what our correct 

output should look like, having the idea that there is a relationship between the input and the 

output[6]. Supervised learning problems are categorised into "regression" and "classification" 

problems [7]. In a regression problem, we are trying to predict results within a continuous 

output, meaning that we are trying to map input variables to some continuous function. In a 

classification problem, we are instead trying to predict results in a discrete output. In other 

words, we are trying to map input variables into discrete categories. 

3.1 Classification Machine Learning Systems 

In classification machine learning system, I am interest in yes or no prediction which in 

this case has been shown in the truth table for a given logic gate, where I take input matrix        

{1 ,0 ,0 }    with an additional value 1 in the first digit, and the output will be differently by  

{1 ,0 ,1 }    different kinds of  desired logic gates. For example, the desired output for the       

{1 ,1 ,0 }    NAND gate will be { 1, 1, 1,0}. In order to do this, I will have an algorithm of     

{1 ,1 ,1 }    training  devices, which takes input matrix and the desired output to compute the 

weight value for each input digit, furthermore the weight will be shown as a standard linear 

equation y= kx + b, in other words, assuming there is a linear y= kx+b can  separate the 1 

values from 0 values in the output.  For instance the mathematical proof  for NAND gate is 

shown in Figure 5 ( threshold t=0.5, learning rater= 0.1).  
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Figure 12 illustrates the theoretical process of  the tanning device, since the algorithm 

predicts yes or no (1 or 0) as output, we set the threshold value to (1+0)/2 =0.5, and the 

correction for the weight values happens when both input digits is 1 and the error is not 0( eg. 

in round 1, input {1, 0,1} with error = 1 and weight { 0.1, 0, 0}, then after this evaluation the 

wight values will become to { 0.1+1*0.1, 0 , 0 +1*0.1}. 

The C# implementation is shown below. 

Input  values Wights values Sum of(input 
*weight) if  S> t then 
1, else 0

Desired 
output

Error Correction

Round 1

{ 1, 0, 0} { 0, 0 , 0 } 0 1 1 0.1

{ 1, 0, 1} { 0.1, 0 , 0  } 0 1 1 0.1

{ 1, 1, 0} { 0.2, 0 , 0.1 } 0 1 1 0.1

{ 1, 1, 1} { 0.3, 0.1 , 0.1 } 0 0 0 0

Round 2

{ 1, 0, 0} { 0.3, 0.1 , 0.1 } 0 1 1 0.1

{ 1, 0, 1} { 0.4, 0.1 , 0.1 } 0 1 1 0.1

{ 1, 1, 0} { 0.5, 0.1 , 0.2 } 1 1 0 0

{ 1, 1, 1} { 0.5, 0.1 , 0.2 } 1 0 -1 -0.1

....

Round 7

{ 1, 0, 0} { 0.7, -0.2 ,-0.2 } 1 0 0 0

{ 1, 0, 1} { 0.7, -0.2 ,-0.2 } 0 1 1 0.1

{ 1, 1, 0} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 1, 1} { 0.8, -0.2 ,-0.1 } 0 0 0 0

Round 8

{ 1, 0, 0} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 0, 1} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 1, 0} { 0.8, -0.2 ,-0.1 } 1 0 0 0

{ 1, 1, 1} { 0.8, -0.2 ,-0.1 } 0 0 0 0
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public static Tuple<double[], int, bool, string> tranningDivace(double[][] inputs, 
  double[] outputs,                       

string name) {
    int count = 0;
    bool fixPoint = true;
    double threshold = 0.5;
    double learning_rate = 0.1;
    double[] weights = new double[inputs[1].Length];
    while (true && count < 20) {
        fixPoint = count + 1 == 20 ? false : true;
        count++;
        double error_count = 0;
        for (int i = 0; i < inputs.Length; i++) {
            double[] arr1 = new double[inputs[1].Length];
            for (int j = 0; j < inputs[i].Length; j++) {
                arr1[j] = inputs[i][j];
            }
            double num = 0;
            if (dot_product(arr1, weights) != threshold) {
                num = dot_product(arr1, weights) > threshold ? 1 : 0;
            } else {
                num = 0.5;
            }
            double error = outputs[i] - num;
            if (error != 0) {
                error_count += 1;
                int index = 0;
                foreach (double q in arr1) {
                    weights[index] += learning_rate * error * q;
                    index++;
                }
            }
        }
        if (error_count == 0) {
            return Tuple.Create(weights, count, fixPoint, name);
        }
    }
    return Tuple.Create(weights, count, fixPoint, name);
}

public static double dot_product(double[] values, double[] weights) {
    double sum;
    sum = values.Zip(weights, (X, Y) => X * Y).Sum();
    return sum;
}

( In order to make the implementation more stable I've set up a limit value where when 

the  value returned by dot_product( Sum * weight in Figure 5) = 0.5, system will return 0.5). 

The outputs for NAND are shown below. 
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---------------------------------------------------------
         Weights for NAND  Round: 8  FixPoint: True               
  0.7                       -0.15                       -0.1       
              
                 Truth table for NAND

        0                   0                 1
        0                   1                 1
        1                   0                 1
        1                   1                 0
---------------------------------------------------------------

Also the output for AND, OR and XOR. 

---------------------------------------------------------------
         Weights for AND  Round: 3  FixPoint: True               
  0.2                       0.2                       0.2           
          
                 Truth table for AND

        0                   0                 0
        0                   1                 0
        1                   0                 0
        1                   1                 1
---------------------------------------------------------------

---------------------------------------------------------------
         Weights for OR  Round: 3  FixPoint: True               
  0.35                       0.2                       0.25   
                  
                 Truth table for OR

        0                   0                 0
        0                   1                 1
        1                   0                 1
        1                   1                 1
---------------------------------------------------------------

---------------------------------------------------------------
         Weights for XOR  Round: 20  FixPoint: False               
  0.35                       0.15                       0.15   
                  
                 True table for XOR

        0                   0                 0
        0                   1                 1
        1                   0                 1
        1                   1                 1
---------------------------------------------------------------

According to the outputs above system successfully worked for the NAND, OR and 

AND, but not for XOR gate, base upon the implementation design above we can assume that 

the output can be shown as 4 points in the 2 dimensional coordinate system and there is a line 

can separate all the 1 values from the 0 values, the graphic view is shown in Figure 13. 
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According to Figure 6 there is highly unlikely to separate the value (0,0) (1,1) and (1,0) 

(0,1) with a single linear function, also the mathematical proof  is,  

 Assuming the is a line y = kx+b that can separate the value (0,0) (1,1) and (1,0) (0,1). 

Figure 13 

 Therefore, 

 k+ b > 0     where there k!=0. 

 k < 0             

 b < 0 

 Thus according to the functions above there is highly unlikely to have a k and b with       k 

+b>0 and k<0, b<0. 

In order to implement a XOR I will compose an NAND and OR to a AND. The truth 

table is shown below, 

And the C# implementation is: 

public static double[][] xorComp(double[][] input, 
                            Tuple<double[], int, bool, string> nand,
                            Tuple<double[], int, bool,string>or,
                            Tuple<double[], int, bool, string> and) {
    double[][] tbXor = new double[4][];
    for (int i = 0; i < 4; i++) {
        tbXor[i] = new double[3];
        foreach (double[] arr in input) {
            tbXor[i][0] = 1.0;
            tbXor[i][1] = dot_product(input[i], nand.Item1) > 0.5 ? 1.0 : 0.0;
            tbXor[i][2] = dot_product(input[i], or.Item1) > 0.5 ? 1.0 : 0.0;
        }
    }
    return tbXor;

Input Values NAND (A) OR(B) A and B

( 0 , 0) 1 0 0

( 0 , 1) 1 1 1

( 1 , 0) 1 1 1

( 1 , 1) 0 1 0
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The output is: 

---------------------------------------------------------------
                 Truth table for XOR    
                           
        0                   0                 0
        0                   1                 1
        1                   0                 1
        1                   1                 0

---------------------------------------------------------------

According to the output above we can compute the XOR by combining NAND, OR 

and AND. 

3.2 Conclusion   

The process above shows a clear implementation of  a basic Classification machine 

learning systems, the algorithm will auto correct the weight values under certain learning rate 

value and eventually the dot product of  input value and weights will give us the desired 

output value, however for the XOR I've used a more complex model where the model will 

take the result of  2 evaluation and put into a new process and the results show a clear 

implementation. 
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4 Neural Networks 

4.1 Introduction to the Neural Networks 

This section provides a basic experiment of  neural networks and neural network 

programming using the Encog Artificial Intelligence Framework and the Computational 

Network Toolkit (CNTK) [13]. Encog [14] is an AI framework that is available for both Java 

and Microsoft. NET and the Computational Network Toolkit is a unified deep-learning 

toolkit that describes neural networks as a series of  computational steps via a directed graph.  

4.2 Experiment With Iris Flower Dataset 

Both Encog and CNTK will be used to analyse the Iris flower data set (aka Fisher’s Iris 

dataset) which is a multivariate data set introduced by Fisher [15]. The dataset consists of  50 

samples from each of  three species of  Iris (Iris setosa, Iris virginica and Iris versiclor). Four 

features were measured from each sample: the tenth and the width of  the sepals and petals, in 

centimetres. Based on the linear discriminant model created by Fisher[15] this  data set 

became a typical test case for many statistical classification techniques in machine learning. 
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The plotting using Matlab is shown above, the dataset been analysed by the feed-

forward algorithm, which the networks consisted of  multiple layers of  computational units, 

usually interconnected in a feed-forward way. Each neurone in one layer has directed 

connection to the neurones of  the subsequent layer, which a similar neurone network was 

described by McCulloch and Pitt [16]. 
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4.2.1C# Experiment with Encog 

The purpose is to create a program that generates a mode to predict the type of  Iris, 

based on the four measurements. Also, this program will allow us to easily change the model 

type to any different model including, Feed-forward Neural Network, NEAT Neural Network 

and Support Vector Machine. The reason why we need different model types is sometimes 

the data is normalised differently by different type mode used. The program will split the 

training data into a training and validation set. The validations will be held until the end to 

see how er we can predict data that the model was not trained on. 

Firstly, we define a VersatileMLDataSet object that will load from CSV file. We define 

the five columns of  the Iris data set. The following code is responding for such, 

VersatileDataSource source = new CSVDataSource( irisFile , false ,CSVFormat . 
DecimalPoint ) ;

var data = new VersatileMLDataSet ( source ) ; 

data . DefineSourceColumn (”sepal−length”, 0,ColumnType.Continuous); data . 
DefineSourceColumn (”sepal−width”, 1, ColumnType.Continuous);
data . DefineSourceColumn (”petal−length”, 2,ColumnType.Continuous);

data . DefineSourceColumn (”petal−width”, 3, ColumnType.Continuous);
ColumnDefinition outputColumn = data . DefineSourceColumn (

”species”, 4,ColumnType . Nominal ) ; 

data . Analyze () ;

The Analyse method reads the entire file and determines the minimum, maximum, 

mean and standard deviations for each column. Sense we are going to prodding the non-

numeric column (species) we use the feedforward neural network to normalise the data, cause 

there is no negative values in numeric columns. The following C# code accomplishes this, 

data . DefineSingleOutputOthersInput (columnMPG) ;
var model = new EncogModel ( data ) ;

model . SelectMethod ( data , MLMethodFactory . TypeFeedforward ) ; 
model . Report = new ConsoleStatusReportable () ;

data . Normalize () ;
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Then before we fit the model we hold back part of  the data for the validation set. We 

choose to hold back 30%, and we chose to randomise the data set with a fix seed value, which 

ensures that we get the same training and validation set each time. This is a matter of  

preference. Finally, we fit the model with a k-fold cross-validation of  size 5. The code below 

accomplishes the task, 

data . LeadWindowSize = 1;

data.LagWindowSize = WindowSize;
model . HoldBackValidation (0.3 , false , 1001) ;

var bestMethod = ( IMLRegression ) model . Crossvalidate ( 5, false);
model . HoldBackValidation (0.3 , true , 1001) ;

model . SelectTrainingType ( data ) ;
var bestMethod = (IMLRegression) model.Crossvalidate(5, true);

The Cross-validation breaks the training dataset into 5 different combinations of  

training and validation data, and the Cross-validation process do not use the validation data 

that we previously set said, cause those data are for a final validation. At the end of  the cross-

validation training the cross-validated error should be displayed. The cross-validation error is 

an estimate how the model might perform on data that is not trained on. The implementation  

is showing below, 

Console.WriteLine(@”Training error: ”+ model.CalculateError(bestMethod, 
model.TrainingDataset));

Console.WriteLine(@”Validation error:”+

model.CalculateError(bestMethod, model.ValidationDataset));
NormalizationHelper helper = data . NormHelper ; 

Console . WriteLine ( helper . ToString ()) ;

From this point, the model has been trained and the best model can be saved using 

normal serialisation. Also, the data should be normalise in order to be used in the model, and 

the data should be denormalised for further use. 

The output from this program will look similar to the following. First the program 

downloads the data set and begins training. Training occurs over 5 foods. Each fold uses a 
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separate portion of  the training data as validation. The remaining portion of  the training 

data is used to train the mode for that fold. Each fold gives a different model; we choose the 

model with the best validation score. We train until the validation score cease to improve, 

which helps to prevent over-fitting. 

1/5 : Fold #1

1/5 : Fold #1/5: Iteration #1 Training Error : 1.34751708, Validation Error : 
1.42040606

1/5 : Fold #1/5: Iteration #2 Training Error : 0.99412971, Validation Error : 
1.42040606

…

1/5 : Fold #1/5: Iteration #47 Training Error : 0.03025748, Validation Error : 
0.00397662

1/5 : Fold #1/5: Iteration #48 Training Error : 0.03007620, Validation Error : 
0.00558196

For instance, the first fold trains for 48 iterations before it stops, and the validation error 

is a decent result. After fold 5 inc complete, the cross-validated score will be displayed which is 

the average of  all 5 validation sores. This should give us a reasonable estimate of  how well the 

model might perform on data that is was not trained with. Using the best mode from the 5 

folds we now evaluate it with the training data and true validation data that we set aside 

earlier 

Training error : 0.023942862952610295
Validation error : 0.061413317688009464

The training error and the validation error is shown above, the shows the training error 

is better than the validation error, this is because the model always tends to perform better on 

data that trained with. 

Finally, we loop over the entire dataset and display predictions. 149/150 is correctly 

predicted and only 1 is mis-predicted. The following example shows the results, 

[5.1, 3.5, 1.4, 0.2] −> predicted: Iris−setosa(correct: Iris−setosa)
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[4.9, 3.0, 1.4, 0.2] −> predicted: Iris−setosa(correct: Iris−setosa) 

...

[7.0, 3.2, 4.7, 1.4] −> predicted: Iris−versicolor(correct: Iris− versicolor)
[6.4, 3.2, 4.5, 1.5] −> predicted: Iris−versicolor(correct: Iris− versicolor)

[5.9, 3.2, 4.8, 1.8] −> predicted: Iris−virginica(correct: Iris− versicolor)  ?
...

[6.3, 3.3, 6.0, 2.5] −> predicted: Iris−virginica(correct: Iris−virginica)

4.2.2 Experiment with CNTK 

Similarly, the purpose is to create a program that generates a model to predict the type 

of  Iris, based on the four measurements. In order to perform this in CNTK, we take 10% of  

the dataset as the test dataset, which is using the model to predict the outcome, and 90% of  

the dataset as the training dataset, which will be using the training model.  

Firstly, we need to define a training block, which contains 3 sub-blocks, the network 

builders, learners and the data readers. The network builders create a network using CNTK’s 

network description language [13], in this case, we will be using the SimpleNetworkBuilder, 

which is the simplest Brainscript in CNTK [13] which creates one of  the predefined networks 

with limited customisation. The coding is inspired by CNTK example simple-2D[13]. 

SimpleNetworkBuilder = [

        # 4 input, 2 50-element hidden, 3 output
        layerSizes = 4:50*2:3

        trainingCriterion = "CrossEntropyWithSoftmax"

        evalCriterion = "ErrorPrediction"
        layerTypes = "Sigmoid"

        initValueScale = 1.0
        applyMeanVarNorm = true

        uniformInit = true

        needPrior = true
    ]

The learner uses the stochastic gradient descent(SGD) algorithm to train the model, which is 

the desired trainer for most applications. In this case, the SGD has 5 parameters, the 

epochSize = 0 means epochSize is the size of  the training set, the minibatchSize parameter 
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denotes the number of  samples between model updates, which a sample here is defined as 

one vector or tensor flying through the system. The learning-rate and momentum parameter 

define the behaviour of  the learning algorithm, and the maxEpochs is the maximum number 

of  epochs to run. 

 SGD = [

        epochSize = 0 

        minibatchSize = 25  
        learningRatesPerMB = 0.5:0.2*20:0.1

        momentumPerMB = 0.9

        maxEpochs = 10
    ]

The reader is how the CNTK reads the data in this case is the 

CNTKTextFormatReader which will read the text- based CNTK format and it supports 

multiple inputs combined in the same file. 

 reader = [
        readerType = "CNTKTextFormatReader"

        file = "$DataDir$/Iris_Data_Train.txt"

        input = [
            features = [

                dim = 4        # 4-dimensional input data
                format = "dense"

            ]

            labels = [
                dim = 3        # 3-dimensional labels

                format = "dense"
            ]

        ]

Sense the train block defines the training network and the algorithm behaviour, the test 

block will be easily defined, cause the test block is a part of  training dataset. 
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Simple_Demo_Test = [

    action = "test"

    reader = [
        readerType = "CNTKTextFormatReader"

        file = "$DataDir$/Iris_Data_Test.txt"
        input = [

            features = [

                dim = 4        # two-dimensional input data
                format = "dense"

            ]
            labels = [

                dim = 3        # two-dimensional labels

                format = "dense"
            ]

        ]

Finally, the output method will read the test data and map the outputs from the 

algorithm to human readable labels. 

Simple_Demo_Output=[

    action = "write"

    reader = [

        readerType = "CNTKTextFormatReader"
        file = "$DataDir$/Iris_Data_Test.txt"

        input = [
            features = [

                dim = 4      

                format = "dense"
            ]

            labels = [
                dim = 3      

                format = "dense"

            ]
        ]

    ]
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    outputNodeNames = PosteriorProb : labels    

    outputPath = "$OutputDir$/SimpleOutput"    

    format = [
        type = "category"                               

        labelMappingFile = "$DataDir$/IrisMapping.txt" 
        sequenceEpilogue = "\t// %s\n"                  

    ]
]

The output of  this program is 15/15, which means CNTK successfully predicted the 

type of  iris, also it is important to point out, I intentionally include the mis-predicted data in 

Encog experiment in the test dataset and the CNTK gives the correct outcome of  that data. 

4.2.3 Experiment Conclusion 
Since we get the decent result from both CNTK and Encog, then is pretty safe to say 

both CNTK and Encog will be able to solve the Iris problem, however, the dataset size is 

relatively small the difference in usage of  CPU and memory is not obvious. Also, it is unwise 

to run the dataset under multi-GPU or parallel computing, cause it will lead for saving more 

time to analyse the data. 

However, the Encog library does not require to customise our neural network, which 

means the network is already pre-coded into the library, on the other hand, we build the 

simple network in CNTK with 2 hidden layers and each layer contains 50 element nodes. 

Thus, in this case when dataset gets complicated and the size of  the dataset get increased, in 

this case, is safe to say CNTK will be more flexible. Furthermore, we get 100% accuracy in 

CNTK tests but 149/150 accuracy by using Encog, which I think the reason is we generated 

a considerably complex network by sacrifice some of  the performance. 

Overall as an ML student, I think both CNTK and Encog have their specialties, but the 

Encog is well-documented and CNTK just comes out last year. In further study, if  I am facing 
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simple task I will prefer to use Encog instead of  CNTK, but if  I have the complex dataset 

with a lot of  data in it I will use the CNTK. 

4.3.1Experiment Using Long Short-term Memory Network  

Neural network based approaches have recently produced record-setting performances 

in natural language understanding tasks such as word labelling. In the word labelling task, a 

tagger is used to assign a label to each word in an input sequence. Specifically, simple 

recurrent neural networks (RNN) and convolutional neural networks (CNNs) have shown to 

significantly outperform the previous state-of-the- art conditional random fields (CRFs). This 

paper investigates using long short-term memory (LSTM) neural networks, They were 

introduced by Hochreiter & Schmidhuber [17], which contain input, output and forgetting 

gates and are more advanced than simple RNN, for the word labelling task. To explicitly 

model output label dependence, we propose a regression model on top of  the LSTM 

unnormalised scores. We also propose to apply LSTM to the Iris dataset [15]( mentioned in 

pervious section) and the ATIS dataset validated the effectiveness of  the proposed models.  

The recurrent neural networks (RNN) address this issue. They are networks with loops 

in them, allowing information to persist. 

In the above diagram, a chunk of  neural network A, looks at some input x and outputs 

a value h. A loop allows information to be passed from one step of  the network to the next. 

These loops make recurrent neural networks seem kind of  mysterious. However, it is not 

different than a normal neural network. A recurrent neural network can be thought of  as 

multiple copies of  the same network, each passing a message to a successor. Thus, is the loop 

is unrolled, 
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This chain-like nature reveals that recurrent neural networks are intimately related to 

sequences and lists. They’re the natural architecture of  neural network to use for such data. 

One of  the appeals of  RNNs is the idea that they might be able to connect previous 

information to the present task, such as using previous video frames might inform the 

understanding of  the present frame. Sometimes, only recent information need to be looked to 

perform the present task. For example, consider a language model trying to predict the next 

word based on the previous ones. If  we are trying to predict the last word in “the clouds are 

in the sky,” we don’t need any further context – it’s pretty obvious the next word is going to be 

sky. In such cases, where the gap between the relevant information and the place that it’s 

needed is small, RNNs can learn to use the past information. 

But there are also cases where we need more context. Consider trying to predict the last 

word in the text “I grew up in France… I speak fluent French.” Recent information suggests 

that the next word is probably the name of  a language, but if  we want to narrow down which 

language, we need the context of  France, from further back. It’s entirely possible for the gap 

between the relevant information and the point where it is needed to become very large. 

Unfortunately, as that gap grows, RNNs become unable to learn to connect the 

information. 
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In theory, RNNs are absolutely capable of  handling such “long-term dependencies.” A 

human could carefully pick parameters for them to solve toy problems of  this form. Sadly, in 

practice, RNNs don’t seem to be able to learn them. The problem was explored in depth by 

Hochreiter [18] and Bengio, et al. [19], who found some pretty fundamental reasons why it 

might be difficult. 

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind 

of  RNN, capable of  learning long-term dependencies. They were introduced by Hochreiter 

& Schmidhuber [17] and were refined and popularised by many people in following work. 

They work tremendously well on a large variety of  problems, and are now widely used. 

LSTMs are explicitly designed to avoid the long-term dependency problem. All 

recurrent neural networks have the form of  a chain of  repeating modules of  neural network. 

In standard RNNs, this repeating module will have a very simple structure, such as a single 

tanh layer. 

The repeating module in a standard RNN contains a single layer. 

LSTMs also have this chain like structure, but the repeating module has a different 

structure. Instead of  having a single neural network layer, there are four, interacting in a very 

special way. 
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In the above diagram, each line carries an entire vector, from the output of  one node to 

the inputs of  others. The pink circles represent point-wise operations, like vector addition, 

while the yellow boxes are learned neural network layers. Lines merging denote 

concatenation, while a line forking denote its content being copied and the copies going to 

different locations.

In particular, RNNs have attracted much attention because of  their superior 

performance in language modelling and understanding tasks. In common with feed-forward 

neural networks(mentioned in pervious section), an RNN maintains a representation for each 

word as a high-dimensional real-valued vector. Critically, similar words tend to be close with 

each other in this continuous vector space. Thus, adjusting the model parameters to increase 

the objective function for a particular training example tends to improve performance for 

similar words in the similar contexts. 

In this paper we focus on spoken language understanding (SLU), in particular, word 

labelling with semantic information. For example, for the sentence “I want to fly from Seattle 

to Paris,” the goal is to label the word “Seattle” and ‘Paris” as the departure and arrival cities 

of  a trip, respectively. 

In this paper we apply LSTM neural networks to the SLU tasks. LSTM has some 

advanced properties compared to the simple RNN. It consists of  a layer of  inputs connected 

to a set of  hidden memory cells, a connected set of  recurrent connections amongst the hidden 

memory cells, and a set of  output nodes. Importantly, input to and output of  the memory 

cells are modulated in a context- sensitive way. To avoid the gradient diminishing and 

exploding problem, the memory cells are linearly activated and propagated between different 

time steps. We further imply the basic LSTM architecture to the Iris dataset to exam the 

performance in the arbitral dataset.  

4.3.1 Recurrent Neural Network with LSTM 

RNNs incorporate discrete-time dynamics. The long short- term memory (LSTM) 

RNN has been shown to perform better at finding and exploiting long range dependencies in 

the data than the simple RNN. One difference from simple RNN is that the LSTM uses a 

memory cell with linear activation function to store information. Note that the gradient-based 

error propagation scales errors by the derivative of  the unit’s activation function times the 

weight that the forward signal weight through. Using linear activation functions allows the 
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LSTM to preserve the value of  errors because its derivative with regard to the error is one. 

This to some extent avoids the error exploding and diminishing problems as the linear 

memory cells maintains unscaled activation and error derivatives across arbitrary time lags. 

The data is ATIS [22], which consists of  944 unique words and 127 different output 

tags which can be found in CNTK project [20, 21], in the training section. Output has 127 

dimension, each corresponding to a semantic tag in ATIS. Unseen words in test will be 

mapped to the similar tags. A file provides such mapping from one word to the other, which is 

useful to map low-frequency input or unseen input to a common input. In this case, the 

common input is provided in the test dataset. To understand the dataset format a sample is 

provided below, 

BOS i would like to find a flight from charlotte to Las Vegas that makes a stop in St. Louis EOS 

it is converted into the following text, 

Sequence Past word Current word Next word Label

1 1:1 1:1 12:1 126:1

1 1:1 12:1 39:1 126:1

1 12:1 39:1 28:1 126:1

1 39:1 28:1 3:1 126:1 

1 28:1 3:1 86:1 126:1 

1 3:1 86:1 15:1 126:1 

1 86:1 15:1 10:1 126:1 

1 15:1 10:1 4:1 126:1 

1 10:1 4:1 101:1 126:1 

1 4:1 101:1 3:1 48:1 

1 101:1 3:1 92:1 126:1 

1 3:1 92:1 90:1 78:1 

1 92:1 90:1 33:1 123:1 

1 90:1 33:1 338:1 126:1 

1 33:1 338:1 15:1 126:1 

1 338:1 15:1 132:1 126:1 
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where the first column identifies the sequence (sentence) ID, which is the same for all 

words of  the same sentence. There are four input streams: PW, CW, NW, L. The input "PW" 

represents the previous word ID, "CW" for current word, and "NW" for next word. Input 

name "L" is for labels. Words "BOS" and "EOS" denote beginning of  sentence and end of  

sentences respectively. 

Each line above represents one sample (word). E.g. the meaning of  this line: 

	 •	 the sequence ID is 1  

	 •	 the current word is "charlotte" whose word ID is 101  

	 •	 the previous word is "from" whose ID is 4  

	 •	 the next word is "to" whose ID is 3  

	 •	 the semantic label is "B-fromloc.city_name" whose label Id is 48. 

	 And in this example, we use BrainScript to create one-layer LSTM with embedding 

for slot tagging. The consolidated config file is ATIS.cntk. One can check the file (with some 

comments) for details, especially how the reader is configured in ATIS.cntk.  

reader=[ 
readerType = "CNTKTextFormatReader" file = "$DataDir$/ATIS.train.cntk.sparse"  
miniBatchMode = "partial" randomize = true  
input = [  
featuresPW = [ 
alias = "PW" # previous word dim = $wordCount$  
format = "sparse"  
] 
featuresCW = [  
alias = "CW" # current word dim = $wordCount$  
format = "sparse"  
] 
featuresNW = [  
alias = "NW" # next word dim = $wordCount$  
format = "sparse"  
]  

1 15:1 132:1 17:1 126:1 

1 132:1 17:1 72:1 126:1 

1 17:1 72:1 144:1 71:1 

1 72:1 144:1 2:1 119:1 

1 144:1 2:1 2:1 126:1 
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labels = [ 
alias = "L" # label dim = $labelCount$ 

format = "sparse" ] 

]

] 

The above section tells CNTK to use CNTKTextFormatReader to read data from the 

file "$DataDir/ATIS.train.cntk.sparse". The same input names (PW, CW, NW, L) are used to 

refer inputs (features and labels) provided in data files. The input is read into different feature 

vectors: featuresPW, featuresCW, featuresNW and labels. These vectors are later used to build 

LSTM node with BrainScript[12] as follows.  

featuresPW = Input(inputDim) 
featuresCW = Input(inputDim) 
featuresNW = Input(inputDim) 
features = RowStack(featuresPW : featuresCW : featuresNW)

labels=Input(labelDim, tag="label") 

# embedding layer 
emb = LearnableParameter(embDim, featDim)

 featEmbedded = Times(emb, features) 
# build the LSTM stack 
lstmDims[i:0..maxLayer] = hiddenDim 
NoAuxInputHook (input, lstmState) = BS.Constants.None

 lstmStack = BS.RNNs.RecurrentLSTMPStack (lstmDims, 

cellDims=lstmDims, 
featEmbedded, 
inputDim=embDim, previousHook=BS.RNNs.PreviousHC, 
augmentInputHook=BS.RNNs.NoAuxInputHook, 

augmentInputDim=0, enableSelfStabilization=false) 

lstmOutputLayer = Length (lstmStack)-1 LSTMoutput = lstmStack[lstmOutputLayer].h 
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The output with minibatch is 0.01884559* 10984, which means we successfully 

analysed 10800 words( including beginning and ending tags).  

4.3.2 Iris dataset with LSTM model  

We further introduce the LSTM model to the Iris dataset, but to make the dataset 

understandable for the CNTK reader, the format of  dataset has been changed into decimal 

number. Which is shown below,  

1 |SL 4.8 | SW 3.0 | PL 1.4 | PW 0.1 |S 1  

where the first column identifies the sequence (sentence) ID, which is the same for all 

words of  the iris flowers. There are five input streams: SL, SW, PL, PW, S. The input "SL" 

represents Sepal length, "SW" for Sepal width, "PL" for Petal length and “PW" for Petal 

width. Input name "S" is for Species. Since, there is only 150 data we reduce the size of  the 

network by changing the input dimension.  

Each line above represents one sample ( flower). E.g. the meaning of  this line: 

	 •	 the sequence ID is 1 and 1 only since there is not a combination of  Iris 

	 •	 the Sepal length is 4.8 cm. 

	 •	 the Sepal width  is 3.0 cm. 

	 •	 the Petal length is 1.4 cm. 

  •	 the Petal width is 0.1 cm. 

	 •	 the semantic Species is 1 which indicates Iris setosa. 

We build the neural network inspired by the ATIS example[22] provided by CNTK 

project. The output with minibatch is 00000* 15, which means we successfully analysed 15 

flowers which randomly selected in the dataset as the test dataset. The distribution of  the the 

dataset flows 5/5/5 ( 5 form the iris setosa specie, 5 form the iris virginica and 5 form the iris 

versiclor). Hint, in this experiment the dataset does not have to be closely related.
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4.3.3 Experiment Conclusion

The ATIS experiment shows we are able to build the LSTM neural network in order to 

solve the spoken language understanding (SLU) problem, it successfully analysed 10984 tags 

with only 2% error rate. This programme can be further used in .Net web recognising and 

complex time series dataset classification problem. Furthermore, we successfully analysed 

the Iris dataset with LSTM model, which as fast as section 4.2 the simpleNetWork with feed-

forward algorithm. 

4.4 Experiment With Image Reader Experiment  

This is the part of  the CNTK where we will using CNTK more to its full potential. In 

previous part modes have been created to solve simple binary and multi-class classification 

problems. Though those models achieved good accuracy, they will not perform as well on 

harder real-world problems. One principal reason is that the decision boundaries between the 

classes are not typically linear. In this report I will learn to build more complex models and 

creating an image classification system using the MNIST dataset[23] as our benchmark.  

4.4.1 The MNIST Dataset 

MNIST is a popular image dataset of  handwritten digits. It is divided into a training set 

of  60,000 examples, and a test set of  10,000 examples. This dataset is a subset of  the original 

data from NIST, pre-processed and published by LeCun et al[23]. The MNIST dataset[23] 

has become a standard benchmark for machine learning methods because it is real-world 

data, yet it is simple and requires minimal efforts in pre-processing and formatting. Each 

instance of  the data consists of  a 28x28 pixel image representing one digit, with a label 

between 0 and 9. Here are some examples: 
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Furthermore, CNTK comes with a python script that fetches and prepares the MNIST 

data for CNTK consumption. By looking through the Python script[24], we found the Python 

script takes the input image and re-shaped it to a 28*28 matrix with pixel’s grey-scale.  

4. 4.2 Building the neural networks  

In the previous work the softmax regression[12] can learn to separate data with more 

than two classes. However, the separation boundaries are linear. However in most realistic 

work the boundaries are trickier than linear, in that case, the feature space can be distorted in 

order to bring the data closer to being linearly separable, and this is what a hidden layer can 

do for us. So basically, the softmax regression solution can be inserted in a hidden layer 

connected to the network’s input. Such a layer will learn to apply a feature mapping that 

projects the data into a space where it is (hopefully) linearly separable. Then, the next layer 

will receive an easier problem to deal with using its linear decision boundaries. 

The softmax function is a generalisation of  the logistic function. It maps a vector of  real 

values to a probability distribution. It is widely used for multi-class classification problems[24]. 

In this context, if  we are trying to predict the class of  an instance out of  k possible classes, the 

model would compute k-dimensional vector whose components represent the confidence 

scores for each class. Then, the softmax function would map those scores to a posterior 

probability distribution over the possible classes using the following formula[25]: 

 

where x is our input vector, and w is the weight matrix, that includes both the model 

parameters and the bias. We want to define a computational network that looks like the one 

in the figure below. This network can be understood as a combination of  three linear models, 

each of  which will be trained to separate one of  the three classes from the other two. Then, 

on top, we have the softmax layer that squashes the linear model scores into a probability 

distribution. Thus, for each instance, the network outputs three probability values that sum up 

to one. For example, if  a given instance is of  class (1), the model might output the following 

probabilities (95%, 3%, 2%), which basically means that the probability of  the instance 

belonging to class (1) is 95%. 
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Let's get back to the task at hand: classifying images of  hand-written digits. To do so, we 

will build our first neural network with CNTK. Starting simple, our network will only have 

one hidden layer., in CNTK’s MINIST example[23], we apply a scaling of  (1.0 / 256.0) on 

the features in order to have their values within the range 0 to 1. This normalisation helps 

SGD to converge faster with better predictive performance. Then, we specify the topology of  

our network. The follow code is responsible for such,  

BrainScriptNetworkBuilder= [ include "Shared.bs" 

featDim = 28 * 28 # number of pixels labelDim = 10 # number of distinct labels 

features = Input (featDim) 
featScaled = Constant (1.0 / 256.0) .* features labels = Input (labelDim) 

hiddenDim = 200 

h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1) z = DNNLayer (hiddenDim, 
labelDim, h1, 1) 

ce = CrossEntropyWithSoftmax (labels, z) errs = ErrorPrediction (labels, z) top5Errs = 
ErrorPrediction (labels, z, topN=5) 

featureNodes = (features) labelNodes = (labels) criterionNodes = (ce) evaluationNodes = 
(errs) outputNodes = (z) 

] 
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With a shared BrainScript, 

DNNLayer (inDim, outDim, x, parmScale) = [ 
W = Parameter (outDim, inDim, init="uniform", initValueScale=parmScale, 

initOnCPUOnly=true) 
b = Parameter (outDim, 1, init="fixedValue", value=0) z=W*x+b 

].z 

Also the SGD (Stochastic Gradient Descent) block[2] tells CNTK how to optimise the 

network to find the best parameters. This includes information about mini-batch size (so the 

computation is more efficient), the learning rate, and how many epochs to train. Here is the 

SGD block for our example:  

SGD = [ 
epochSize = 60000  
minibatchSize = 32 learningRatesPerSample = 0.003125 

momentumAsTimeConstant = 0 

maxEpochs = 30 

] 

where the epochSize indicates the number of  samples to use in each epoch. An 

intermediate model and other check point information are saved for each epoch. The 

minibatchSize means using minibatch size of  128 for the first two epochs and then 1024 for 

the rest, which in other words, it is the number of  samples processed between model updates. 

The learningRatePerSample means the learning rates per epoch with which each sample's 

gradient updates the model, similarly the momentumAsTime constant is CNTK specifies 

momentum in a minibatch-size agnostic way as the time constant. The maxEpochs indicts the 

maximum number of  epochs to run. 

To run the example we got: 

Final Results: Minibatch[1-625]: errs = 2.250% * 10000; top5errs = 0.040% * 10000 

This model has an error of  2.25%,  which  is not too bad for image recognition. 

However, by using Convolutional Neural Networks, we can improve the result even better.

 

BTECH 451 "45



4.4.3A deeper network with Convolutional Neural Networks 

As we have seen, a simple neural network can achieve impressive results on the MNIST 

dataset[22]. However, these results are not all that good when compared to what is out there 

in the literature . But we can do much better if  we introduce some concepts from CNN 

theory[26]. 

A convolutional neural network (CNN) consists of  model layers that apply local filters 

and are stacked in a certain order. A convolutional layer applies a learned local linear filter, 

e.g. of  [3*3] pixels, to every pixel position in an image. Such filter capture local patterns 

thanks to the local connectivity of  its units. Whereas the input image has a single dimension 

(gray-scale level), hidden layers maintain their spatial layout but store an entire activation 

vector for each pixel position, where each dimension of  the activation vector has its own filter 

kernel, or feature map[27]. A feature map is basically a sliding window over sub-regions of  

the layer's inputs, where each application of  the map results in one dimension of  the output 

activation vector. A feature map is computed by performing a dot product between its filter 

parameters and the corresponding input rectangle, which is slid across the entire 2D plane. 

This linear filter operation is called convolution. Each feature map is called a depth slice. 

Here is a simple example of  how the feature map is applied. 

To do so, an activation function layer has been used, which A non-linear activation 

function is then applied to each unit output element of  the convolutional layer. One of  the 

most commonly used functions is the Rectified Linear Unit[28], or ReLU, which is simply 
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max(0,x). Its practical advantage over a sigmoid function is that it does not suffer from the 

vanishing gradient problem, and therefore learning can be more efficient. 

The “Max Pooling” layer[28] has been also used after the activation function that aims 

at reducing dimensionality. It divides the input into a set of  non-overlapping regions, where 

for each region it outputs the maximum activation value (independently for each depth slice). 

By reducing each region into a single point, the image dimension is reduced. What this 

achieves is two-fold: (1) it reduces the number of  parameters and thus helps controlling 

overfitting; and (2) it selects the salient activation values regardless of  their location in the 

region, which helps training models that are more resilient to things like rotation / translation. 

Here is an example (from Wikipedia[25]) of  max pooling with a window size of  [2*2] (which 

would reduce a hidden layer of  [28 * 28 *16]to [14 * 14 *16].  

Finally, after cascading several convolutional, activation function, and MaxPooling 

layers, a CNN will have one or more fully connected, or dense, layers. Every unit in a dense 

layer has connections to all activations of  the previous layer, similar to regular neural 

networks. Furthermore, he softmax layer for classification. We know the softmax from the first 

part of  the tutorial. The output is a probability distribution over the possible classes. Below is 

a chart of  a CNN with two alternating convolution / activation and MaxPooling layers, one 

dense layer, and one softmax layer given by CNTK example[22]. 
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4.4.4 The Network Definition  

We define each sample as a 28* 28matrix rather than a vector. This is because a CNN 

exploits local correlations in the image. Thus, we need to preserve this information. Second, 

in addition to the layer we saw in the previous network, we define a cascade of  convolutional 

and max-pooling layers. We have two of  each type. The core layer is ConvReLULayer which 

is defined as a function in Shared.bs. Here is what this macro looks like:  

ConvReLULayer (inp, outMap, inWCount, kW, kH, hStride, vStride) = [ 

convW = Parameter (outMap, inWCount, init="uniform", initValueScale=wScale) 
convB = ImageParameter (1, 1, outMap, init="fixedValue", value=bValue, 

imageLayout="$imageLayout$") 

conv = Convolution (convW, inp, kW, kH, outMap, hStride, vStride, zeroPadding=false, 
imageLayout="$imageLayout$") 

act = RectifiedLinear (conv + convB) 

].act 

The Convolution built-in function that convolves (filters) the image with a kernel.We will 

also need the MaxPooling operation. This allows us to put together the final network 

definition of  our CNN that will learn to classify images of  hand-written digits. Note the 

reason why we have 2 MaxPooling layer is the method reduce the matrix by half  util we get 

[7*7], further reduce will cause a redundant in dataset: 
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wScale = 10 ; bValue = 1 # in Shared.bs imageW = 28  
imageH = 28  
labelDim = 10 

features = ImageInput (imageW, imageH, 1, imageLayout="$imageLayou$") 

featScaled = Constant(1/256) .* features) 
labels = InputValue (labelDim) 
kW1 = 5 

kH1 = 5  
cMap1 = 16  
hStride1 = 1  
vStride1 = 1  
conv1_act = ConvReLULayer (featScaled, cMap1, 25, kW1, kH1, hStride1, vStride1) 

pool1W = 2  
pool1H = 2  
pool1hStride = 2  
pool1vStride = 2  
pool1 = MaxPooling (conv1_act, pool1W, pool1H, pool1hStride, pool1vStride, 

imageLayout="$imageLayout$") 

kW2 = 5  
kH2 = 5  
cMap2 = 32  
hStride2 = 1  
vStride2 = 1  
conv2_act = ConvReLULayer (pool1, cMap2, 400, kW2, kH2, hStride2, vStride2, 10, 1) 

pool2W = 2  
pool2H = 2  
pool2hStride = 2  
pool2vStride = 2  
pool2 = MaxPooling (conv2_act, pool2W, pool2H, pool2hStride, pool2vStride, 

imageLayout="$imageLayout$") 

h1Dim = 128  
h1 = DNNSigmoidLayer (512, h1Dim, pool2, 1) 
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ol = DNNLayer (h1Dim, labelDim, h1, 1) 
ce = CrossEntropyWithSoftmax (labels, ol) 

errs = ErrorPrediction (labels, ol) 
featureNodes = (features) 
labelNodes = (labels) 
criterionNodes = (ce) 
evaluationNodes = (errs) 
outputNodes = (ol) 

The output for the test results on the console:  

Final Results: Minibatch[1-625]: errs = 0.83% * 10000; 

ce = 0.02825477 * 10000 

With an error of  0.83%, this model (unsurprisingly) greatly outperforms the previous 

one. It took only 2-3 minutes and 15 epochs to train on a single GPU, and it took 15-20 

minutes and 15 epochs to train on CPU-only.  

4.4.5 Conclusion  

After analysing all the samples in CNTK project[22], in an addition to wade variety of  

built-in computation nodes, CNTK provides a plug-in architecture allowing users to define 

their own computation nodes. There are 5 algorithms in CNTK: Feed-Forward, CNN, RNN, 

LSTM and Sequence-to-Sequence. Compare to other toolkits like Encog, CNTK does offer a 

highly concentrated approach which focus on solving analysing both similarity and accuracy 

of  the dataset. 

Unfortunately, as a Machine Learning toolkit, CNTK does not have a produce 
method( for now), that can further use the analysing output to actually produce something. As 

a analysing tool CNTK has a wade combination of  analysing tricks, which in my perspective 

it is easy to use and easy to learn. However, the reader in CNTK is confused, in LSTM mode 

experiment the ATIS[22] dataset has been manually reshaped into CNTK supported reader 

format. 

Hence, in my perspective, CNTK do need a better data reader and CNTK should be 

used as a part of  a project not all of  the project, in other words, we should pack the CNTK 

result into other program or other code. 
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5 Overall Conclusion 
For this year, my focus for Btech 451 is mainly on the algorithms for Machine Learning 

(ML). Like I said in the beginning of  this project, ML is coming into its own, with a growing 

recognition that ML can play a key role in a wide range of  critical applications, such as data 

mining, natural language processing, image recognition, and expert systems. ML provides 

potential solutions in all these domains and more, and is set to be a pillar of  our future 

civilisation , also in 1997, Tom Mitchell gave a “well-posed” definition that has proven more 

useful to engineering types: “A computer program is said to learn from experience E with 

respect to some task T and some performance measure P, if  its performance on T, as 

measured by P, improves with experience E. [31]”. For the past year, we’ve covered much of  

the basic theory underlying the field of  Machine Learning here, including the traditional 

libraries Accord and Encog, also the new technology CNTK, but of  course, we have only 

barely scratched the surface. However, to implement the theories to the real life like the Iris 

dataset experiment and two- coins  flipping problem, gives us a deeper understanding of  the 

topics. One thing for sure, there are many libraries and approaches in ML and no one is 

perfect, to choice the must suitable method for the scenarios appears to be the most necessary 

step in the way of  solving ML problems. 

The traditional method like the Accord library and the Encog library can be considered 

as the first step to the ML world, cause it is not only well- documented and it is based on 

textbook programming languages like C# and Java. However, these method has its 

limitations, for instance, when I use this method it feels a bit method-oriented, the user must 

understand how this method works and when it can be used.  

Cleary, CNTK appears to be the next thing for both Microsoft research and AL 

community. However, in my perspective, CNTK is still in it’s beta phase, and it needs to be 

improved. For instance, CNTK is computational toolkit which only provides us a way of  

analysing which means it will not actually producing something, which is perfectly okey for 

traditional method, cause it has so many other interface and libraries as the backup. 

Sometimes CNTK feels a bit isolated by it’s own kind, unlike the Caffe [32] developed by the 

Berkeley Vision and Learning Centre it has a forward method to actually predict something 

really meaningful. However, CNTK does have the capability to involve GPU and multi-GPUs 

to the computing part, and it is easy to implement. This capability generally reduces the run-

time by 90% on a considerably big dataset., which means the CNTK has a better potential 

than the traditional algorithms.  
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Hence, in my point of  view, ML is the calculator for the mathematicians, the 

microscope for the doctors, or even the canvas for the artist and fingerboard for the musicals. 

It still needs a better mind to drive, to navigate. 

Note. All the experiments was run on the Microsoft Surface Pro 4 with Intel Core i5 

and 8 GB Ram. 
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Appendix 
R 5 5 5 6 5 7 5 8 5 9 4 9 3 9 2 9 1 9

1 4.6896.8334.79 6.03 4.8296.93335.1948.18145.0088.4453.77388.0463.1689.18151.8868.9951.01669.2114
2 4.7477.25 3.8 6.03 3.75 7.3645.0528.2745.2589.00834.75 8.8833.3248.90411.82288.666660.9259.0753
3 6.6674.9984.0975.84 4.6486.5834.28 8.405714.7859.0854.4 9.2922.7 9.178 2 8.90411.2228.792
4 5.7344.2654.92 6.45 4.763887.46114.7428.24 5.4268.86853.59338.94282.9759.3881.9949.0281.17599.051
5 3.8765.6255.19 6.4 5.56 7.11884.7547.9814.6 9.2413.95 9.0123.0669.3472.05398.80830.7234128.904
6 4.4366.3335.1 6.33 5.5347.52754.09047.5254.9429.27773.9859.65 2.6 8.845181.86579.02 1.22239.04333
7 3.9 5.47 4.45 6.1654.44 6.9 4.7 8.000315.20838.79 4.1 9.1082.9589.2221.7149.05650.7133339.0341
8 4.47 4.21 5.45 6.87 3.0476.49 4.9377.73074.94299.58333.89889.38 3.0368.99441.5668.78191.22229.15818
9 4.93 6.6874.6686.3854.8877.0935.09688.28164.7419.2344.3538.65332.7818.69851.916669.163350.9920638.75

10 5.49 4.14 4.49 6.25 4.75 7.5054.4318.2745.24 8.9154.0147.7613.058339.02632.35559.117140.884128.84
11 5.4 3.8754.3165.98 4.8977.19 5.2848.0284.7939.1523.78759.0452.9758.7131.97429.4 0.9588.79126
12 4.37 5.75 4.1255.45 5.00317.45834.92298.34 5.3339.0113.98 8.78 2.9998.9 1.69159.03540.9799.36349
13 4.81 5.96 5.0037.3335.9088.25 5.1637.3474.7118.540874.01778.7633.20838.68022.059029.05271.06889.55
14 5.05 4.33 3.25 6.0095.05 7.14455.19748.0254.64169.1216933.88 8.8953.2638.9722.20839.00491.00058.6805
15 4.5 5.6395.1 5.9884.3556.755715.5478.0354.75839.00563.83339.2183.25289.29882.4759.055550.81258.7226
16 5.5 4.06 5.1786.4865.4 7.5924.6678.14 5.14728.93333.71199.32 3.18889.06642.5278.8671.18 9.28
17 6.1 4.83 3 5.49 5.27 6.4355.5837.791334.36669.16043.71958.82 3.050599.170832.021119.33 0.56399.3101
18 5.14 3 4.9156.3794.5596.3095.17 7.87615.2889.04583.54168.99463.01669.05641.90558.6161.18418.58
19 5.11 4.29 4 5.98 3.27 6.1985.1947.8964.8429.2043.91668.8873.06799.5 2.3478.98750.9388.929
20 4.49 5.67 4.26 5.51 4.6867.34 4.4769 8 5.38 8.85 4.3 8.99632.2859.14442.68699.12770.91668.63154
21 5.04 3.5 5.166 7 5.1157.55 5.3897.69724.7068.93883.64239.1162.96778.6681.9789.0761.11578.8875
22 4.92 3 4.1255.7375.0736.9415.3198.3354.9739.02774.1028.92632.62088.7932.1888.9271.06199.0916
23 4 5.44 4.8756.02 5.18 7.2134.5997.49 4.49819.083335 8.69073.490210 2.5699.31 0.95999.5833
24 4.47 5.67 4.7126.1625.1317.8124.69448.2884.59 9.1184.06039.4122.0638.81822.11858.75 1.14668.8842
25

4.7398.5 5.1585.9394.8127.0675.2178.38514.37 9.0043.9819.2 3.20958.8752.3819.25 0.92489.2
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R 5 5 5 6 5 7 5 8 5 9 4 9 3 9 2 9 1 9

26 4.7398.5 5.1585.9394.8127.0675.2178.38514.37 9.0043.9819.2 3.20958.8752.3819.25 0.92489.2
27 5.12 2.75 0 5.89 5.34 6.47 5.131258.16115.1858.9454.02 8.9883.02088.8912.0839.4161.00519.252
28 3.1664.97 4.0625.88 4.49 6.81 5.0758.0464.93 8.7554.4828.9832.52389.010712.5118.9741.04218.86
29 5.6483.333 2 5.7 5.0967.21 4.76097.85275.3648.6694.41668.9272.7679.2981.7479.02221.38554428.91666
30 5.98 4.2 4.56 6.1774.13 7.0814.43717.641664.6418.7324.32278.9 2.9968.9771.96038.97 0.9888.8333
31 5.5 4.93 3.9645.7674.99 8.1254.5 7.18614.7899.1753.5579.06072.88638.95 2.03429.3541.2058.834
32 6.8334.95 4.2945.88 4.8937.1114.5597.76945.0819.0833.86669.07342.83 9.1662.04339.170790.77639.01
33 4.05 6.1 5.35 7.33 5.0696.3034.90928.01945.6719.1843.3128.8922.83339.0382.11 9.40131.21 8.9055
34 6.5834.6254.2995.6 4.76 7.25 5.201 8 4.7939.1974.06259.166662.30559.1872.2798.7770.72919.1906
35 5.04 4.08 5.1446.2335.0226.9115.2598.13435.1298.6453.36948.6863.39 8.8781.97029.131940.96048.86904
36 4.1385.3474.84 6.06 4.4687.4 4.6447.84445.08378.7093.36258.8993.26 8.9131.764928.548331.09 8.95
37 4.56115.78 4.3776.04 5.0037.0924.6258.1 4.38389.2884.1348.6733.22 9.13331.42 9.11351.0189.10777
38 5.65 4.7065.5 8 4.86 7.3514.4347.70594.89 8.7164.0798.57972.5048.792852.31118.98191.15039.746
39 4.03 5.69 5.46 6.46 4.9957.5 3.7 7.58775.1259.1223.6558.88543.25698.9712.1879.1751.1339.033
40 5.33 8 4.9476.6755.64 7.3254.2958.3345.4668.6883.4978.8142.5779.4472.66219.01660.8339.0198
41 5.17 3.27 4.66 6.0555.3326.9625.3758.0034.58 8.7134.8 9.2852.9958.68341.791669.02751.19088.79166
42 4.66 6.66 4.33 5.64 5.4616.814 5 8.18374.6838.9033.7354.75 3.4549.18651.83888.86651.15139.064
43 4.2 5.6125.14 5.9365.1667.0294.7378.0755.35 8.48363.9858.6932.45 9.2582.13618.72421.20478.825
44 4 5.29 4.42 6.18 5.17 7.0095.87 8.5985.0558.8813.3 8.87842.8929.08211.93559.22220.76389.0404
45 4.99 6.6 4.64 6.038 2 6.25 5.0518.0974.57639.0483.7819.01872.9059.16661.97619.14440.980159.0634
46 4.566 8 5.47 6.8334.6386.6714.07147.67034.4978.704984.12028.72 2.69018.86662.07228.8750.881949.225
47 4.24 5.56 3.64 5.8365.1728.0276.0953 8 5.0129.256253.42 8.6873.05218.79331.8888.936660.46669.333
48 5.75 4.7234.41 6.22 4.5577.5624.05957.00594.2879.25833.7258.95012.3739.05831.6699.12971.29689.32
49 4.5 5.63 4.9656.211 1 5.9 4.9827.9133.4 8.96 7.7 9.08412.6527779.0182.75748.9810.9759.1
50

3.9865.1444.5846.0764.72776.29 3 7.62945.23 8.79763.56 8.6 2.59388.4161.8449.25 0.98039.125
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